Richtlijn
Behandeling van de proximale femurfractuur bij de oudere mens

1^e TRANCHE
Inhoudsopgave

1 **SAMENVATTING RICHTLIJN BEHANDELING VAN DE PROXIMALE FEMURFRACTUUR BIJ DE OUDERE MENS**... 6
 1.1 **STROOMDIAGRAM BEHANDELING VAN DE PROXIMALE FEMURFRACTUUR BIJ DE OUDERE MENS**.. 7
 1.2 **CONCLUSIES / AANBEVELINGEN**... 8
 1.2.1 Fractuurclassificatie .. 8
 1.2.2 Patiëntenprofiel ... 8
 1.2.3 Therapie .. 8
 1.2.4 Techniek osteosynthese ... 9
 1.2.5 Techniek endoprothese ... 10
 1.2.6 (Na)behandeling .. 10

2 **ALGEMEEN**.. 11
 2.1 **INLEIDING** ... 11
 2.2 **AANLEIDING** .. 11
 2.3 **DOELSTELLING** ... 12
 2.4 **DEFINITIE** .. 12
 2.5 **DOELPOPULATIE** .. 12
 2.6 **PROBLEEMOMSCHRIJVING EN UITGANGSVRAGEN**.. 12
 2.7 **BEHANDELING VAN PROXIMALE FEMURFRACTUREN IN NEDERLAND**........................... 12
 2.8 **TRANSPARANTIE PROCES EN WERKWIJZE** .. 13
 2.9 **LEDEN CRL (EXPERTISE)** ... 13
 2.10 **EIGENAAR EN JURIDISCHE BETEKENIS** ... 13
 2.11 **BEOOGDE GEBRUIKERS** .. 14
 2.12 **VERZAMelen EN BEOORDELEN LITERATUUR** ... 14
 2.13 **BESCHRIJVING IMPLEMENTATIETRAJECT** .. 15
 2.14 **WIJZE VAN AUTORISATIE RICHTLIJN BINNEN DE NEDERLANDSE VERENIGING VOOR HEELKUNDE, ORTHOPEDIE, VERPLEEGHUISARTSEN, KLINISCHE GERIATRIE EN FYSIOTHERAPIE** ... 15
 2.15 **EXPIRATIE DATUM** ... 15

3 **FRACtuURCLASSIFICATIE**... 16
 3.1 **INLEIDING** ... 16
 3.2 **RONGENDIAGNOSTIEK** ... 16
 3.3 **INDELING** .. 16
 3.3.1 Mediale collumfractuur .. 16
 3.3.2 Trochantere femurfractuur ... 19
 3.4 **VERANTWOORDING** ... 19

4 **PATIËNTPROFIEL** .. 21
 4.1 **INLEIDING** .. 21
 4.2 **OP DE SEH** ... 21
 4.3 **BINNEN 1 WEEK NA OPNAME** .. 21
 4.4 **VERANTWOORDING** .. 21

5 **NIET GEDISLOCEERDE (GEÎNCLAVEERDE) MEDIALE COLLUMFRACTUUR** 23
 5.1 **CONSERVATIEVE BEHANDELING** ... 23
 5.2 **OPERATIEVE BEHANDELING** ... 23
 5.3 **VERANTWOORDING** .. 23

6 **GEDISLOCEERDE MEDIALE COLLUMFRACTUUR**... 24
 6.1 **OPERATIEVE BEHANDELING** ... 24
6.2 **OSTEOSYNTHSE** ... 24
6.3 **ENDOPROTHESE** .. 25
 6.3.1 *Techniek hemiarthroplastiek / totale heup prothese* ... 25
6.4 **VERANTWOORDING** .. 25

7 **EXTRACAPSULAIRE FRACHTUUR** ... 29
 7.1 **OPERATIEVE BEHANDELING** .. 29
 7.2 **OSTEOSYNTHSE** .. 29
 7.2.1 *Techniek reposite* ... 29
 7.2.2 *Techniek fixatie GHS* .. 30
 7.2.3 *Techniek fixatie IM osteosynthese* .. 30
 7.3 **VERANTWOORDING** .. 30

8 **(NA)BEHANDELING** ... 33
 8.1 **INLEIDING** .. 33
 8.2 **PREVENTIEVE MAATREGELEN** .. 33
 8.2.1 *Profylactisch antibiotica* ... 33
 8.2.2 *Tromboembolische profylaxe* ... 33
 8.3 **DELIRES** ... 33
 8.4 **OSTEOPOROSE** .. 34
 8.5 **VALRISICO** .. 34
 8.6 **ALGEMENE ASPECTEN** .. 34
 8.7 **VERANTWOORDING** .. 34

9 **FYSIOTHERAPIE** .. 36
 9.1 **INLEIDING** .. 36
 9.2 **BEHANDELINGSAFHANKELIJKE ASPECTEN** .. 36
 9.2.1 *Conservatieve behandeling bij niet gedisloceerde mediale collum fractuur (GMC)* 36
 9.2.2 *Na osteosynthese: intramedullaire fixatie of plaat/schroeffixatie* 36
 9.2.3 *Na prothesiologie: kop-halsprothese of totale heupprothese* .. 36
 9.3 **VERANTWOORDING** .. 36

10 **RESOCIALISATIE** ... 37
 10.1 **INLEIDING** ... 37
 10.2 **VERANTWOORDING** .. 37
Figuren

- **Figuur 1** AP bekkenfoto en axiale foto van de heup .. 16
- **Figuur 2** Fractuurindeling mediale colhumfractuur: .. 17
- **Figuur 3** Indeling volgens Pauwels ... 18
- **Figuur 4** Fractuurindeling volgens AO van extracapsulaire heupfracturen: 20
- **Figuur 5** AP opname van de heup: Garden index ter bepaling van varus-valgus dislocatie 26
- **Figuur 6** Axiale opname van de heup .. 27
- **Figuur 7** AP en axiaal beeld van de heup na schroefixatie. ... 27
- **Figuur 8** Beeld van een Pauwels 3 fractuur, fixatie met GHS ... 28
- **Figuur 9** AP en axiale röntgenopname van een trochantere fractuur na onbloedige repositie 31
- **Figuur 10** AP en axiale röntgenopname van een 31A1 fractuur met GHS fixatie. 31
- **Figuur 11** AP en axiale röntgenopname van de heup van een 31A2 fractuur met IM penfixatie 32

Bijlagen

- **Bijlage 1** Definities en afkortingen ... 38
- **Bijlage 2** ASA score ... 39
- **Bijlage 3** Mobiliteitsscore volgens Parker en Palmer .. 39
- **Bijlage 4** Barthel index ... 39
- **Bijlage 5** MMSE score ... 40
- **Bijlage 6** Praktisch voorbeeld van een klinisch behandel schema met belaste mobilisatie 41
- **Bijlage 7** Fysiotherapeutische overdracht ... 42
- **Bijlage 8** Uitvoering met gebruik van hulpmiddelen ... 43
- **Bijlage 9** Risicoscore osteoporose (richtlijn CBO) ... 44
- **Bijlage 10** Screening valrisico (richtlijn CBO) ... 44
Samenstelling van de commissie Richtlijn Behandeling van de proximale femurfractuur bij de ouderen

Voorzitter:
- Prof. dr. A.B. van Vugt, chirurg, Universitair Medisch Centrum St Radboud, Nijmegen, namens de Nederlandse Vereniging voor Heelkunde (NVvH).

Leden:
- Dr. R. van Balen, verpleeghuisarts, Antonius Binnenweg, Rotterdam en LUMC afdeling Public Health en Eerstelijngeneeskunde, Leiden, namens de Nederlandse Vereniging voor Verpleeghuisartsen (NVvV);
- Dr. T.J.M. van der Cammen, internist-klinisch geriater, Erasmus MC, Rotterdam, namens de Nederlandse Vereniging voor Klinische Geriatrie (NVKG);
- Dr. P.M.N.Y.H. Go, chirurg, St. Antonius Ziekenhuis, Nieuwegein, namens de Nederlandse Vereniging voor Heelkunde (NVvH);
- Dr. M.J. Heetveld, chirurg, Kennemer Gasthuis, Haarlem, namens de Nederlandse Vereniging voor Traumatologie (NVT);
- Prof. dr. A. van Kampen, orthopedheed, Universitair Medisch Centrum St Radboud, Nijmegen, namens de Nederlandse Orthopaedische Vereniging (NOV);
- Dr. F.A.M. de Loos, namens de patiëntenvereniging Stichting Patiëntenbelangen Orthopaedie;
- R.A. Nuijten, fysiotherapeut, namens het Koninklijk Nederlands Genootschap voor Fysiotherapie (KNGF);
- Dr. E.L.F.B. Raaijmakers, orthopedisch chirurg n.p., AMC, Amsterdam;
- Dr. I.B. Schipper, chirurg, Erasmus MC, Rotterdam, namens de Nederlandse Vereniging voor Traumatologie (NVT).
1 Samenvatting Richtlijn Behandeling van de proximale femurfractuur bij de oudere mens

Anamnese
Val, pijn in de heup- bovenbeen-knie, onvermogen te staan/lopen
Algemene conditie

Lichamelijk onderzoek
Pijn bij bewegen, onvermogen te bewegen.
Abnormale stand (verkorting, abductie, exorotatie)

Aanvullend onderzoek
X-bekken en axiale heup aangedane zijde

Fractuurclassificatie
Mediale collumfractuur: geïnclaveerd/niet gedisloceerd versus gedisloceerd
na reposietie is een classificatie volgens Pauwels 1-3 mogelijk
Trochantere femurfractuur: indeling volgens hoofdgroep AO-classificatie A1-A2-A3

Behandeling
Overweeg conservatieve, functionele behandeling bij geïnclaveerde, niet gedisloceerde mediale collumfractuur bij gezonde mobiele patiënten.
Alle andere gevallen: operatieve behandeling

Operatietechniek
Osteosynthese:
Mediale collumfractuur: schroeffixatie, glijdende heup schroef fixatie
Trochantere fractuur A1: glijdende heup schroef fixatie of intramedullaire pen
Trochantere fractuur A2-3: intramedullaire pen of glijdende heup schroef fixatie
Endoprothese: kophals- of totale heuprothese
Mediale collumfractuur: bij ingeschatte hoge kans op fallen osteosynthese.

(Na)behandeling
- Tijdstip van operatie is bij voorkeur binnen 24 uur na opname;
- Met betrekking tot de wijze van anesthesiologische begeleiding is er geen voorkeur voor locoregionale of algehele anesthesie uit te spreken;
- Antibiotische profylaxe dient routinematig te worden toegepast te worden bij operatieve interventie;
- Tromboseprophylaxe conform richtlijn CBO Veneuze Trombo-embolie (1999) herziene versie in concept (2006);
- Vroegtijdige functionele, belastbare nabehandeling onder leiding van fysiotherapie;
- Vroegtijdige inschatting mogelijkheden tot resocialisatie;
- Diagnostiek en behandeling osteoporose conform richtlijn CBO ‘Tweede Herziene Richtlijn Osteoporose’ (2002);

Cave: denk om algemene factoren en daarmee samenhangende postoperatieve morbiditeit.
1.1 Stroomdiagram Behandeling van de proximale femurfractuur bij de oudere mens
1.2 Conclusies / aanbevelingen

1.2.1 Fractureclassificatie

Niveau 1: *men dient* …
- bij verdenking op een fractuur van het proximale femur een AP röntgenopname van het bekken en een axiale röntgenopname, van de zijde waar de fractuur vermoed wordt, te maken;
- bij proximale femurfracturen onderscheid te maken tussen de intracapsulaire of mediale collumfractuur en de extracapsulaire of trochantere femurfractuur;
- de *mediale collumfractuur* in te delen in twee groepen: de niet gedisloceerde, geïncliveerde fractuur versus de gedisloceerde fractuur;
- de *trochantere femurfractuur* te classificeren volgens de hoofdgroepen van de AO-classificatie: A1, A2 en A3.

Niveau 4: *de werkgroep is van mening dat* …
- bij een *mediale collumfractuur*, waarbij een osteosynthese de behandeling van keuze is, het aanbeveling verdient *na repositie van de fractuur* onder doorlichting de fractuursteilte bepalen met indeling naar Pauwels 1-2 versus Pauwels 3.

1.2.2 Patiëntprofiel

Niveau 1: *men dient* …
- teneinde een indruk te verkrijgen over anesthesie- en operatierisico een aantal preoperatieve onderzoeken direct bij opname te verrichten;
- een operatieve interventie binnen 24 uur na opname uit te voeren, tenzij er medische contra-indicaties bestaan.

Niveau 2: *het is aannemelijk dat* …
- wat betreft het opstellen van een patiëntprofiel op de Spoed Eisende Hulp op gestandaardiseerde wijze een indruk verkregen dient te worden wordt van de algemene conditie van de patiënt en functioneren vóór de fractuur;
- meer gedifferentieerde gegevens in relatie tot algemene behandelingaspecten en revalidatieresocialisatie verzameld dienen te worden op de verpleegafdeling (<1 week na opname).

1.2.3 Therapie

Niveau 1: *men dient* …
- bij de operatieve behandeling van een mediale collumfractuur ofwel endoprothetische vervanging (EP) dan wel interne fixatie (IF) toe te passen;
 Nb.: gevorderde artrose van het ipsilaterale heupgewricht, pathologische fractuur en reumatoïde artrose zijn algemeen geaccepteerde contra-indicaties voor IF.
- stabiele trochantere fracturen (31A1) bij voorkeur te behandelen met extramedullair implantaat (glijdende heupschroef (GHS)). Als alternatief kan een intramedullaire osteosynthese (IM) toegepast worden.

Niveau 2: *het is aannemelijk dat* …
- EP vervanging (kop-halsprothese of totale heupprothese) de eerste keuze van behandeling is bij patiënten met een gedisloceerde mediale collumfractuur;
- in geval van een mediale collumfractuur IF te overwegen is bij mobiele, gezonde (ASA klasse 1-2) patiënten van 65 tot 80 jaar, waarbij de kans op revisie als acceptabel kan worden beschouwd. Hiervoor is een optimale repositie en fixatie een eerste vereiste;
• bij operatieve behandeling van een niet gedisloceerde mediale collumfractuur een osteosynthese met behulp van een (percutane) schroeffixatie is aangewezen;
• bij immobile, demente patiënten met een mediale collumfractuur, waar palliatie (pijnstilling) het behandeldoel is, een percutane schroeffixatie als minimaal invasieve ingreep te overwegen is;
• instabiele trochantere fracturen (31A2 en 31A3): bij voorkeur behandeld worden met een intramedullaire osteosynthese (IM). Als alternatief kan een extramedullair behandeling met een glijdende heupschroef (GHS) toegepast worden. Ervaring van de operateur met een bepaald implantaat is vooralsnog van doorslaggevende aard bij de behandeling van instabiele fracturen.

Niveau 3: *men kan…*
• een conservatieve behandeling overwegen bij een geïnclavereerde, niet gedisloceerde mediale collumfractuur bij alle gezonde patiënten (ASA 1-2), die na het ongeval niet meer konden lopen en bij patiënten, die lopend de afdeling SEH of polikliniek bezoeken;
• aan de hand van de Pauwels indeling (te bepalen na repositie) bij een osteosynthese van een gedisloceerde mediale collumfractuur de keuze van het implantaat aanpassen: (percutane) schroeffixatie enerzijds bij Pauwels 1-2 en een glijdende heup schroef (GHS) fixatie bij Pauwels 3 fracturen anderzijds.

Niveau 4: *de werkgroep is van mening dat…*
• er met betrekking tot de indicatie tot spoed ingrijpen bij een mediale collumfractuur in relatie tot kopnecrose geen éénduidige conclusie getrokken kan worden. Operatieve interventie dient derhalve binnen de algemeen gestelde termijn van 24 uur na opname te geschieden.

1.2.4 Techniek osteosynthese

Niveau 2: *het is aannemelijk dat…*
• bij een gedisloceerde mediale collumfractuur de volgende criteria kunnen worden aangehouden met betrekking tot optimale repositie:
 AP opname: Varus-valgus dislocatie: Garden index: 160–180°
 Verkorting moet opgeheven zijn.
 laterale opname: Dorsoventrale dislocatie: Tot 10° retrosversie en tot 5° antversion.
• bij een mediale collumfractuur (percutane schroeven, GHS) met betrekking tot optimale fixatie de volgende criteria kunnen worden aangehouden:
 AP opname: in centrale of caudale deel van de femurkop
 laterale opname: in het centrale of dorsale deel van de femurkop
 De positionering dient te zijn tot in het subchondrale bot van de kop, waarbij een afstand van de tip van de schroef tot de rand van de femurkop in de centrale as van 5-10 mm dient te worden aangehouden.

Niveau 3: *men kan…*
• bij een trochantere fractuur een gesloten repositie bewerkstelligen. Bij onvoldoende resultaat dient overgegaan te worden tot een open repositie. Optimale repositie en positionering van het implantaat, ongeacht GHS of IM is gerelateerd aan de kans van slagen van de osteosynthese;
• bij een interne fixatie van een trochantere fractuur (GHS, IM) voor optimale fixatie de volgende criteria aanhouden:
 AP opname: Heupschroef in centrale of caudale deel van de femurkop
 laterale opname:
in het centrale of dorsale deel van de femurkop. De positionering dient te zijn tot in het subchondrale bot van de kop, waarbij een afstand van de tip van de schroef tot de rand van de femurkop in de centrale als van 5-10 mm dient te worden aangehouden.

Niveau 4: de werkgroep is van mening dat ...
- met betrekking tot optimale repositiecriteria bij trochantere fracturen de volgende criteria in acht genomen kunnen worden:
 - **AP opname:** Caput-collum-diaphyse (CCD)-hoek van het proximale femur dient tenminste 130° te bedragen.
 - **laterale opname:** Er dient een goed alignement te zijn tussen de as van de femurschacht en de as van het collum femoris. Er dient voldoende contactoppervlak (meer dan 50%) te zijn tussen de hoofdfragmenten van de fractuur: caput-collum proximaal en femurdiaphyse distaal.

1.2.5 Techniek endoprothese

Niveau 1: men dient ...
- geen voorkeur uit te spreken ten aanzien van de keuze van prothese of de chirurgische benadering hiervan;
- bij voorkeur gebruik te maken van een gecementeerde prothese.

1.2.6 (Na)behandeling

Niveau 1: men dient ...
- antibiotische profylaxe toe te dienen;
- tromboseprofylaxe toe te dienen; hiervoor verwijzen wij naar de richtlijn CBO Preventie veneuze trombo-embolie (1999); revisie concept 2006 is beschikbaar;
- vanaf opname in het ziekenhuis aandacht te besteden aan interventies ter preventie van delirium.

Niveau 2: het is aannemelijk dat ...
- antibiotische profylaxe maximaal 30 minuten en minimaal 10 minuten voor incisie gegeven dient te worden en maximaal 24 uur postoperatief gecontinueerd dient te worden;
- aandacht voor voeding, vroege mobilisatie, en een gericht antidecubitus beleid complicaties kunnen verminderen;
- het belangrijk is om het gebruik van een catheter à demeure zo kort mogelijk te houden, liefst te verwijderen <24 uur na de operatie;
- farmacologisch management van een delier dient te bestaan uit lage dosis neuroleptica (haloperidol), soms in combinatie met benzodiazepines.

Niveau 4: de werkgroep is van mening dat ...
- fysiotherapie tijdens het verblijf in het ziekenhuis ten doel heeft in een vroeg stadium weer belast te mobiliseren (op geleide van pijn) en algemene complicaties (pneumonie, decubitus, urineweginfectie) te voorkomen. Het optimaal haalbare is het verkrijgen van het preëxistente niveau van functioneren;
- fysiotherapie de periode daarna gecontinueerd dient te worden in ofwel de thuissituatie of een meer begeleide situatie (verzorgingshuis, revalidatieafdeling van een verpleeghuis) en gericht moet zijn op revalidatie en resocialisatie.

Algemene aspecten:

2 Algemeen

2.1 Inleiding
Een van de speerpunten van het kwaliteitsbeleid van de Orde van Medisch Specialisten (OMS) is het ontwikkelen en implementeren van medisch-specialistische richtlijnen. Richtlijnen zijn niet alleen belangrijk voor de praktijkvoering, maar ook voor opleiding, bij- en nascholing, producttypering, complicatieregistratie en indicatorenontwikkeling. Tevens kan het proces van richtlijnontwikkeling richting geven aan wetenschappelijk onderzoek, omdat het inzichtelijk maakt op welke gebieden er onvoldoende bewijs is voor gepast medisch handelen.

Conform de definitie in het project van de OMS is een richtlijn:
Een binnen de beroepsgroep overeengekomen gedragslijn voor gepaste zorg, die zoveel mogelijk gebaseerd is op de wetenschappelijke inzichten uit systematisch en actueel klinisch wetenschappelijk onderzoek naar effectiviteit en doelmatigheid van de beschikbare alternatieven, rekening houdend met de situatie van de patiënt.

Richtlijnen worden ontwikkeld om:
• de medische kwaliteit en de doelmatigheid te verbeteren (management);
• de inter-doktervariatie terug te dringen: het handelen moet meer op bewijs gestoeld zijn dan op ervaringen of meningen (professionalisering, professionaliteit versus intuïtie);
• het handelen transparanter te maken (‘accountability’: wat mag wie van wie verwachten?).

Deze richtlijn over de behandeling van femurfracturen wordt ontwikkeld door leden van de Nederlandse Vereniging voor Heelkunde (NVvH) en is een van de eerste richtlijnen die resulteren uit het richtlijnenproject van de OMS in het kader van de Meerjarenafspraak met de overheid.

2.2 Aanleiding
In de ‘Meerjarenafspraken curatieve somatische zorg’ zijn het ministerie van VWS en de OMS overeengekomen dat de Orde in het richtlijnenproject het voortouw zal nemen. De ondersteuning van de wetenschappelijke verenigingen en de ontwikkeling van de benodigde instrumenten voor de richtlijnontwikkeling en –implementatie worden door de Orde als project gerealiseerd. Voor de begeleiding van het project en de besluitvorming rondom de ingediende richtlijnvoorstellen is een begeleidingscommissie geformeerd.

Alle wetenschappelijke verenigingen van de erkende medische specialismen zijn in de gelegenheid gesteld in het kader van de Meerjarenafspraken richtlijnen te gaan ontwikkelen en te implementeren. De NVvH heeft deze Richtlijn Behandeling van de proximale femurfractuur bij de oudere mens ingediend.

De wensen van de wetenschappelijke verenigingen ten aanzien van het ontwikkelen en implementeren van medisch-specialistische richtlijnen worden getoetst aan de criteria zoals vastgelegd in het toetsingskader, dat in het kader van de richtlijnenprogramma Meerjarenafspraken is vastgesteld en door de Plenaire Raad voor Wetenschap, Opleiding en Kwaliteit op 9 maart 1999 is geaccordeerd. Deze criteria zijn:
• draagvlak binnen de wetenschappelijke vereniging(en);
• innovatieve methode;
• maatschappelijke discussie;
• betekenis voor de gezondheidszorg en de samenleving (kwalitatief en kwantitatief);
• grootte van de patiëntencategorie;
• macro-economische impact/budgettair belangrijk onderwerp.

Definitief concept 5-11-2007

Pagina 11 van 44
Aan het merendeel van deze criteria wordt in deze richtlijn over de behandeling van proximale femurfracturen bij de oudere mens tegemoetgekomen.

2.3 Doelstelling
Deze richtlijn is een document met aanbevelingen en instructies ter ondersteuning van de dagelijkse praktijk van de behandeling van femurfracturen door chirurgen. De richtlijn berust op de resultaten van wetenschappelijk onderzoek en aansluitende meningsvorming gericht op het expliciteren van goed medisch handelen. De richtlijn beoogt een leidraad te geven voor de dagelijkse praktijk. De richtlijn biedt aanknopingspunten voor het opstellen van locale protocollen, hetgeen voor de implementatie bevorderlijk is.

2.4 Definitie
Een proximale femurfractuur is een fractuur van het collum femoris of een fractuur reikend tot in de trochantere regio tenminste 1 centimeter distaal van het trochanter minor.

2.5 Doelpopulatie
Alle patiënten ouder dan 65 jaar met een proximale femurfractuur.

2.6 Probleemomschrijving en uitgangsvragen
De commissie die deze richtlijn voorbereidde, wilde antwoord krijgen op de volgende vragen:

a. Wat is de meest werkbare indeling met betrekking tot fractuurtypering?
b. Welke algemene factoren bij opname zijn van belang met betrekking tot het te kiezen beleid?
c. Welke behandelstrategie is de eerste keuze van behandeling (conservatief, operatief, osteosynthese, endoprothetische vervanging)?
d. Met welke morbiditeit moet rekening gehouden worden in de vroeg postoperatieve fase?
e. Wat zijn specifieke aspecten in de nabehandeling met betrekking tot somatisch, psychisch en sociaal herstel?

2.7 Behandeling van proximale femurfracturen in Nederland
We kunnen spreken van de fractuurepidemie van de 21ste eeuw, waarbij er in 2004 17500 proximale femurfracturen klinisch werden behandeld, met een te verwachten toename van 5% per jaar. Het betreft in meer dan 88% van de gevallen ouderen >65 jaar, met een verdelingspatroon man: vrouw van 1:3. De behandeling wordt in 80% door algemeen chirurgen en 20% door orthopedisch chirurgen uitgeoefend en is gemeengoed in alle Nederlandse ziekenhuizen. Afhankelijk van fractuurtipe en algemene conditie van de patiënt wordt een klein deel conservatief behandeld. Bij de mediale collumfractuur wordt een keuze gemaakt tussen osteosynthese versus endoprothetische vervanging en bij extracapsulaire fracturen speelt de keuze plaat-schroeffixatie versus intramedullaire osteosynthese een rol.

Een groot probleem vormt de revalidatie en resocialisatie van de oudere patiënt. Als behandeldoel kan gesteld worden, dat de patiënt weer zo snel mogelijk in de eigen woonomgeving wordt gereïntegreerd. 60% van de patiënten woont voor de fractuur thuis, waarvan een deel in een wankel evenwicht, 25% woont semi-zelfstandig in een verzorgingshuis en heeft voorspelbaar veel moeite met revalidatie tot een acceptabel niveau. Door een tekort aan verpleeghuis- en revalidatiefaciliteiten ontstaat een afnemend probleem, gekenmerkt als het “verkeerde bed”. Dit resulteert in een onnodig lang verblijf het ziekenhuis, waar onvoldoende aandacht aan het herstel kan worden gegeven. De resterende groep (15%) is reeds afhankelijk en woonachtig in een somatisch of psychogeriatrisch verpleeghuis. Hier kan over het algemeen een snelle terugplaatsing naar de oorspronkelijke woonomstandigheden verwezenlijkt worden. Een deel van deze patiënten is tevoren reeds slecht ter been of zelfs immobiel. Hierbij
concentreert de behandeling zich op palliatie in de vorm van adequate pijnstilling en verpleegbaar/verzorgbaar maken van de patiënt.

2.8 Transparantie proces en werkwijze
De commissie kwam op 26-03-2002 voor het eerst bijeen en heeft regelmatig gerapporteerd aan de Commissie Kwaliteit van de NVvH. De concept richtlijn is aangeboden aan de NVvH en de NOV in september 2006.

2.9 Leden CRL (expertise)
Bij het samenstellen van de commissie werd gezocht naar leden met de volgende kenmerken:
• klinische en wetenschappelijke expertise op het gebied van heupfractuurchirurgie van het proximale femur en geneeskundige zorg voor ouderen;
• afkomstig uit alle bij de behandeling betrokken specialismen;
• afkomstig uit zoveel mogelijk regio’s;
• afkomstig uit academische en perifere opleidings- en niet-opleidingsklinieken;
• aanhangers van zoveel mogelijk verschillende operatietechnieken.

Alle leden volgden de cursus Evidence Based Richtlijn Ontwikkeling georganiseerd door de OMS, het CBO en de Cochrane Collaboration.

Leden commissie
Voorzitter:
• Prof.dr. A.B. van Vugt, chirurg, Universitair Medisch Centrum St Radboud, Nijmegen, namens de Nederlandse Vereniging voor Heelkunde (NVvH).

Leden:
• Dr. R. van Balen, verpleeghuisarts, Antonius Binnenweg, Rotterdam en LUMC afdeling Public Health en Eerstelijnsgeneeskunde, Leiden, namens de Nederlandse Vereniging voor Verpleeghuisartsen (NVvV);
• Dr. T.J.M. van der Cammen, internist-klinisch geriater, Erasmus MC, Rotterdam, namens de Nederlandse Vereniging voor Klinische Geriatrie (NVKG);
• Dr. P.M.N.Y.H. Go, chirurg, St. Antonius Ziekenhuis, Nieuwegein, namens de Nederlandse Vereniging voor Heelkunde (NVvH);
• Dr. M.J. Heetveld, chirurg, Kennemer Gasthuis, Haarlem, namens de Nederlandse Vereniging voor Traumatologie (NVT);
• Prof.dr. A. van Kampen, orthopedeed, Universitair Medisch Centrum St Radboud, Nijmegen, namens de Nederlandse Orthopaedische Vereniging (NOV);
• Dr. F.A.M. de Loos, namens de patiëntenvereniging Stichting Patiëntenbelangen Orthopaedie;
• R.A. Nuijten, fysiotherapeut, namens het Koninklijk Nederlands Genootschap voor Fysiotherapie (KNGF);
• Dr. E.L.F.B. Raaijmakers, orthopedisch chirurg n.p., AMC, Amsterdam;
• Dr. I.B. Schipper, chirurg, Erasmus MC, Rotterdam, namens de Nederlandse Vereniging voor Traumatologie (NVT).

2.10 Eigenaar en juridische betekenis
Eigenaar
Deze richtlijn is eigendom van de Nederlandse Vereniging voor Heelkunde te Utrecht.

Juridische betekenis
Richtlijnen zijn geen wettelijke voorschriften, maar op ‘evidence’ gebaseerde inzichten en aanbevelingen, waaraan zorgverleners moeten voldoen om kwalitatief goede zorg te verlenen. Belangrijk is hierbij te realiseren dat er verschillende ‘levels of evidence’ zijn, variërend van het hoogste level of niveau (1A), dat wat consistent is aangetoond in een systematic review, en het laagste level of niveau (4), dat wat slechts berust op opinie van experts. Dit resulteert dan in verschillende klassen van aanbeveling. Aangezien deze aanbevelingen zijn gebaseerd op de ‘gemiddelde patiënt’, kunnen zorgverleners op basis van hun professionele autonomie zo nodig afwijken van de richtlijn. Dit kan zelfs noodzakelijk zijn, indien de situatie van de patiënt dat vereist.
Wanneer er van de richtlijn wordt afgeweken, dient dit te worden beargumenteerd en gedocumenteerd.

2.11 Beoogde gebruikers
Deze richtlijn is bestemd voor chirurgen, orthopeden en assistenten in opleiding tot chirurg of orthopeed. Enige hoofdstukken zijn bestemd voor andere zorgverleners, zoals internisten, klinisch geriaters, verpleeghuisartsen, revalidatieartsen en fysiotherapeuten. De commissie streeft ernaar de richtlijn, na bespreking, te bewerken tot een internationale richtlijn.

2.12 Verzamelen en beoordelen literatuur
Alle relevante literatuur werd door kleine groepen voorbereid en vervolgens door alle commissieleden beoordeeld.

Evidence level
<table>
<thead>
<tr>
<th></th>
<th>Indien ondersteund door tenminste 2 onafhankelijk van elkaar uitgevoerde onderzoeken van niveau B: het is aannemelijk, men zou … moeten …</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Indien niet ondersteund door onderzoek van niveau A of B: er zijn aanwijzingen dat…, men kan …</td>
</tr>
<tr>
<td>4</td>
<td>Op grond van de mening van de werkgroepleden: de werkgroep is van mening dat …</td>
</tr>
</tbody>
</table>

2.13 Beschrijving implementatietaject

De commissie heeft besloten een regionale inventarisatie te verrichten van alle behandelde proximale femurfracturen bij patiënten die verricht werden/worden in twee perioden.

De 0-meting is verricht in de regio Nijmegen over de periode 2005. De tweede meting zal in dezelfde regio verricht worden in 2007.

Publicatie in het Nederlands Tijdschrift voor Geneeskunde zal aan de hoofdredactie worden aangeboden. Voordrachten op de jaarvergadering(en) van de vakvereniging(en) zullen aan de congrescommissie van de vereniging(en) worden aangeboden.

De richtlijn zal conform het reglement NVvH kenbaar gemaakt worden aan alle leden van de NVvH. Het bestuur van de NOV zal eveneens op de hoogte worden gebracht om binnen deze vereniging dezelfde weg te kunnen volgen.

2.14 Wijze van autorisatie richtlijn binnen de Nederlandse Vereniging voor Heelkunde, Orthopedie, Verpleeghuisartsen, Klinische Geriatrie en Fysiotherapie

Een richtlijn dient tot stand te komen op basis van de resultaten van wetenschappelijk onderzoeken een aansluitende meningsvorming gericht op het expliciteren van goed medisch handelen. Daarnaast dient er een breed draagvlak te zijn binnen de NVvH. Tenslotte zal de vereniging eigenaar zijn van deze richtlijn. Om hieraan tegemoet te komen is voor het volgende autorisatietoetsen gekozen.

De richtlijn wordt in concept opgesteld door de Commissie Richtlijn Behandeling van de proximale femurfractuur bij de oudere mens. De Commissie Richtlijnen van de NVvH accordeert de plaatsing van de conceptrichtlijn op de website van de NVvH. Alle leden van de Vereniging kunnen interactief commentaar geven op het concept gedurende drie maanden. Zo nodig past de Commissie Richtlijn Behandeling van de proximale femurfractuur bij de oudere mens het concept aan. De Commissie Richtlijnen van de NVvH beoordeelt of de richtlijn opnieuw aan de leden van de NVvH moet worden voorgelegd via de website of dat het definitieve concept naar het bestuur van de NVvH kan gaan voor vaststelling van de richtlijn. Het bestuur stelt tijdens een bestuursvergadering de richtlijn vast. Hiermee is de richtlijn definitief geworden voor de van tevoren in de richtlijn vastgelegde duur.

2.15 Expiratie datum

De richtlijn is geldig tot 5 jaar na introductie.
3 Fractuurclassificatie

3.1 Inleiding
Classificatie van fracturen dient richting te geven aan de behandeling en inzicht te verschaffen in de prognose. Tevens dient een classificatie betrouwbaar toepasbaar te zijn in de algemene praktijk (non-expert situatie). Hiervoor is een eenvoudige ondervdeling van fractuurtypen wenselijk.

3.2 Röntgendiagnostiek
Routine röntgenonderzoek van de heup houdt in: AP röntgenopname van het bekken en axiale röntgenopname van de zijde, waar de fractuur vermoed wordt. Gehele bekken moet worden gezien inclusief proximale eenderde deel femora. En beide femurkoppen moeten op de AP bekkenopname in beeld zijn. Op de axiale foto moet het collum femoris centraal met minimale overprojectie van het collum femoris over de trochanter major zichtbaar zijn. De gehele kop moet zichtbaar zijn. (Figuur 1).

Figuur 1 AP bekkenfoto en axiale foto van de heup
A: AP bekkenfoto met heupfractuur rechts. B: Axiale foto van de rechter heup met fractuur

3.3 Indeling
Bij proximale femurfracturen dient allereerst een onderscheid gemaakt te worden tussen de intracapsulaire of mediale collumfractuur enerzijds en de extracapsulaire of trochantere femurfractuur anderzijds. Behalve dat dit voor de prognose van belang is, maakt dit ook verschil met betrekking tot de behandelingsstrategie.

3.3.1 Mediale collumfractuur
Op de ongevalfoto moet gedifferentieerd worden tussen twee hoofdgroepen:
- niet gedisloceerde, geïnclaveerde fractuur;
- gedisloceerde, instabiele fractuur.
De fractuur wordt als geïnclaveerd beschouwd als op de AP foto de mediale trabeculae een hoek van minimaal 160° maken met de mediale cortex van het femur en het been klinisch niet verkort is (zie Figuur 2). De positie van het kophalsfragment op de axiale foto is niet van belang. Alle overige fracturen zijn als gedisloceerd, instabiel te beschouwen.
Figuur 2 Fractuurindeling mediale collumfractuur:
AP röntgenfoto van de rechter heup: geïnclaveerd/niet gedisloceerde fractuur (L) en gedisloceerde fractuur (R)
Op basis van deze classificatie wordt, mede op grond van andere, meer algemene overwegingen, gekozen voor een behandeling. Valt de keuze op een osteosynthese, dan verdient het aanbeveling na repositie van de fractuur onder doorlichting de fractuursteilete te bepalen met indeling naar:

- Pauwels 1-2;
- Pauwels 3.

Men spreekt van een Pauwels 1-2 fractuur indien de helling van de fractuurlijn (femurzijde) niet groter is dan 50°. Alle fracturen met een grotere hoek dan 50° worden als Pauwels 3 geclasseerd (zie Figuur 3).

Figuur 3 Indeling volgens Pauwels

Indeling intracapsulaire heupfractuur naar Pauwels. Uitsluitend te bepalen na repositie van de heup op AP doorlichtingopname van de aangedane heup:

- **Pauwels 1 (L)** horizontaal verlopend fractuurvlak (0-30°) bij belasten vooral met compressie in het fractuurvlak.
- **Pauwels 2 (M)** schuin verlopend fractuurvlak (30-50°) bij belasten compressie en schuifkrachten. (peroperatieve fixatie met 1x K-snaar en voerdraad voor GHS reeds in situ)
- **Pauwels 3 (R)** verticaal verlopend fractuurvlak (>50°) bij belasten uitsluitend schuifkrachten.
3.3.2 *Trochantere femurfractuur*

Op de ongevalfoto dient geclasseerd worden volgens de hoofdgroepen van de AO classificatie: A1, A2 en A3.
Figuur 4).

Men spreekt van een A1 fractuur als het fractuurverloop in het pertrochantere vlak ligt en er sprake is van een niet complexe fractuur met twee fractuurfragmenten. Een type A2 fractuur is een pertrochantere verlopende fractuur met tenminste een derde fractuurfragment, dat de trochanter minor separateert van de andere twee fragmenten. In geval van een fractuurverloop distaal van het pertrochantere niveau spreekt men van een A3 fractuur.
Aan de hand hiervan wordt de keuze van het implantaat gemaakt, waarbij een grove indeling tussen glijdende heup schroef/plaat enerzijds en intramedullaire implantaten anderzijds kan worden gemaakt.

3.4 Verantwoording
Validatiestudies met betrekking tot de betrouwbaarheid van fractuurclassificatie zijn in voldoende mate beschikbaar om te komen tot een richtlijn. De hierboven genoemde indeling volgt wat betreft de indeling geïnclaveerd/niet gedisloceerd versus gedisloceerd voor de mediale collumfractuur en indeling volgens AO, beperkt tot de hoofdgroepen A1-A2-A3 voor de extracapsulaire fracturen.
- Bewijsniveau 1 op basis van meerdere diagnostische test A2.

Wat betreft de peroperatieve herclassificatie volgens Pauwels is er sprake van een lager bewijsniveau waarbij gebruik van deze indeling (na repositie) in overweging kan worden genomen.
- Bewijsniveau 4 op basis van diagnostische test D: mening van deskundige, met consensus van de leden van de werkgroep.
Figuur 4 Fractuurindeling volgens AO van extracapsulair heupfracturen:

AP röntgenfoto van de heup:
31 A1: stabiele pertrochantere femurfractuur rechts (trochanter minor in continuïteit met de femurschacht)
31 A2: instabiele pertrochantere femurfractuur rechts (trochanter minor los fragment t.o.v. femurschacht)
31 A3: intertrochantere femurfractuur
4 Patiëntprofiel

4.1 Inleiding
Teneinde een indruk te verkrijgen over anesthesie- en operatierisico zullen op de Spoed Eisende Hulp afdeling (SEH) een aantal onderzoeken verricht dienen te worden. Hiertoe dient de algemeen geaccepteerde standaard van de American Society of Anesthesiologists (ASA) classificatie gehanteerd te worden. Tevens is het van belang een indruk te krijgen van algemene conditie en dagelijks functioneren vóór de fractuur. Dit bepaalt immers mede of en zo ja, welke operatietechniek gekozen wordt, alsmede of er een noodzaak is tot uitstel van de geplande ingreep.

Operatieve interventie dient bij voorkeur binnen 24 uur na opname te geschieden, daar onnodig delay de kans op postoperatieve mortaliteit en morbiditeit negatief beïnvloedt. Behandeling van acute bijkomende morbiditeit die de vitale functies beïnvloedt heeft prioriteit, optimaliseren van chronische pathologie is zinloos.

De prognose ten aanzien van herstel en ontslagbestemming is in sterke mate afhankelijk van enkele kenmerken van patiënten die al bij ziekenhuisopname aanwezig zijn. Onderscheid wordt er gemaakt tussen gegevens die al verzameld dienen te worden op de SEH en gegevens die verzameld kunnen worden later op de verpleegafdeling (<1 week na opname).

4.2 Op de SEH
• co-morbiditeit: welke andere diagnosen zijn al bekend, met name dementie;
• medicatiegebruik;
• algemene lichamelijke conditie, ASA classificatie (Bijlage 2);
• hydratie en voedingstoestand;
• decubitusgevoeligheid;
• mobiliteit vóór de fractuur (bijvoorbeeld met behulp van eenvoudig scoresysteem volgens Parker en Palmer, zie Bijlage 3);
• verblijfplaats, woonomstandigheden vóór de fractuur;
• toedracht van de val: ‘struikel’-incident of ging het gepaard met duizeligheid of bewustzijnsverlies (CVA, TIA, hartritmestoornissen);
• beoordeling op delier: kan aandacht niet vasthouden, is suf, heeft (wisselend) verlaagd bewustzijn;
• geheugen en oriëntatie: naam, leeftijd, oriëntatie in plaats, tijd en persoon.

4.3 Binnen 1 week na opname
• functioneren vóór de fractuur (bijvoorbeeld: Barthel Index, zie Bijlage 4);
• aanwezige en beschikbare (mantel) zorg;
• geestelijk functioneren (bijvoorbeeld: MMSE-score, zie Bijlage 5);
• indicatie tot osteoporose diagnostiek en behandeling: (zie Bijlage 9);
• valrisico (zie Bijlage 10)

4.4 Verantwoording
Met betrekking tot het tijdstip van operatieve behandeling is interventie binnen 24 uur na opname geïndiceerd, tenzij er medische contra-indicaties bestaan.
• Bewijsniveau 1 op basis van therapeutische interventie niveau A2; meerdere onafhankelijke studies beschikbaar.

Wat betreft het opstellen van een patiëntprofiel is er sprake van een aanbeveling dit profiel op de SEH en de verpleegafdeling als boven op te stellen.
• Bewijsniveau 2 op basis van diagnostische test B.
5 Niet gedisloceerde (geïnclaveerde) mediale collumfractuur

5.1 Conservatieve behandeling
Indien er sprake is van een niet gedisloceerde (geïnclaveerde) mediale collumfractuur, dan kan een conservatieve behandeling overwogen worden bij
• patiënten, die lopend de afdeling SEH of polikliniek bezoeken;
• gezonde patiënten (ASA 1-2), ongeacht leeftijd, die na het ongeval niet meer konden lopen.

De behandeling is functioneel, vroege mobilisatie, zodra de pijn het toelaat, zo mogelijk met 2 krukken partieel (20 kg) belasten tot 8 weken na het ongeval.
In de follow-up behoeven alleen controlefoto’s gemaakt te worden, wanneer de pijn niet vermindert, of wanneer zij verergerd dan wel terugkeert.

5.2 Operatieve behandeling
Bij patiënten van 65 jaar en ouder met meer dan één serieuze nevendiagnose (ASA 3-5) is de kans op secundaire instabiliteit hoog en loopt op tot bijna 80%. Een primair operatieve behandeling door middel van een osteosynthese wordt daarom aanbevolen.

5.3 Verantwoording
Bij de bovengenoemde patiëntencategorieën kan men een conservatieve, functionele behandeling bij een niet gedisloceerde collumfractuur in overweging nemen.
• Bewijsniveau 3 op basis van therapeutische interventie niveau B; echter geen twee of meer onafhankelijke studies beschikbaar, die zich uitspreken voor conservatieve behandeling.

Bij operatieve behandeling van een niet gedisloceerde mediale collumfractuur is een osteosynthese met behulp van een (percutane) schroeffixatie aangewezen.
• Bewijsniveau 2 op basis van therapeutische interventie niveau B; meerdere onafhankelijke studies beschikbaar.
6 Gedisloceerde mediale collumfractuur

6.1 Operatieve behandeling
Men dient zich te vergewissen dat zowel EP vervanging als IF beiden kunnen worden toegepast bij de operatieve behandeling van een mediale collumfractuur. EP vervanging vermindert de kans op revisie, ten koste van meer peri- en postoperatieve morbiditeit en mogelijk hogere vroege mortaliteit.
EP (kop-halsprothese of totale heupprothese) is de eerste keuze van behandeling bij alle patiënten boven de 80 jaar en bij patiënten van 65-80 jaar met verminderde vitaliteit (ASA 3). Men kan een osteosynthese bij bovengenoemde patiëntencategorieën evenwel in overweging nemen als 2e keuze.
Bij mobiele, gezonde (ASA klasse 1-2) patiënten van 65 tot 80 jaar, waarbij de kans op revisie acceptabel is, mits een optimale repositie en fixatie bereikt kunnen worden, is IF een verantwoorde keuze en ter beoordeling van de behandelend arts.
Bij chronisch immobiele, demente patiënten, waar palliatie (pijnstilling, verpleegbaarheid) het enige behandeldoel is, kan een IF als minimaal invasive ingreep overwogen.
Omtrent de indicatie tot spoed-ingrijpen bij mediale collumfractuur in relatie tot kopnecrose kan geen éénduidige conclusie getrokken worden. Operatieve behandeling dient bij voorkeur binnen 24 uur na opname plaats te vinden. Behandeling van acute bijkomende morbiditeit die de vitale functies beïnvloedt heeft prioriteit, optimaliseren van chronische pathologie is zinloos. (zie ook 4 Patiëntprofiel).

NB.: Gevorderde artrose van het ipsilaterale heupgewricht, pathologische fractuur en reumatoïde artrose zijn algemeen geaccepteerde contra-indicaties voor IF.

6.2 Osteosynthese
6.2.1 Techniek repositie
Repositie:
Gesloten repositie bij een mediale collumfractuur is mogelijk met behulp van de tractietafel of met specifieke handgrepen met de heup in flexie (Leadbetter).
Criteria adequate repositie:
Het verdient aanbeveling de volgende criteria aan te houden met betrekking tot de optimale repositie:
- AP opname:
 Craniocaudale dislocatie: Kopfragment moet voldoende uit de caudale dislocatie gereponeerd worden. Dit kan men inschatten aan de hand van het verloop van de mediale cortex en het calcar femoris die geen verplaatsing van het kopfragment naar caudaal mag vertonen;
- laterale opname:
 Dorsoventrale dislocatie: Kopfragment moet in lijn met de as van de femurhals liggen. Tot 10° retroversie en tot 5° anteverseis acceptabel (zie Figuur 6).
6.2.2 Techniek fixatie:
Indien het biomechanisch concept van de driepuntsfixatie toe te passen is bij de niet steile fractuur types (Pauwels 1-2), wordt het inbrengen van subchondrale (gecanuleerde) schroeven geadviseerd (zie Figuur 7). Het meest kritische is de plaatsing van één van de schroeven zo caudaal mogelijk over het calcar femoris in de AP projectie en één zo dorsal mogelijk over de achterste cortex van de hals in de axiale projectie. Schroefpositie in het ventrocraniale deel van de kop dient vermeden te worden.
In geval van het gebruik van een glijdende heupschroef (GHS) of -plaat dient de positie van de schroef op AP projectie in het centrum of caudale 1/3 van de kop te zijn. Op de axiale projectie eveneens centrale of dorsale positionering.
De positionering van schroeven of een GHS dient te zijn tot in het subchondrale bot van de kop, waarbij een afstand van de tip van de schroef tot de rand van de femurkop in de centrale as van 10 tot liefst 5 mm dient te worden aangehouden. (Tip-Apex-Distance)
In geval van een steile fractuur Pauwels type 3 (zie Figuur 3) valt het inbrengen van een glijdende heupschroef, met meer intrinsieke stabiliteit te overwegen, omdat het bovengenoemde biomechanische principe van driepuntsfixatie met schroeven niet toepasbaar is (zie Figuur 8).

6.3 Endoprothese

6.3.1 Techniek hemiarthroplastiek / totale heup prothese
Voor het plaatsen van een hemi- of totale arthroplastiek (kop-halsprothese of totale heuprothese) zijn de (antero)laterale en posterieure benadering gebruikelijk. Er is onvoldoende bewijs om één van de benaderingen als superieur te beschouwen. De posterieure benadering leidt in het algemeen tot een grotere kans op postoperatieve luxatie dan de antero benadering, daarentegen is er bij de (antero)lateral benadering een grotere kans op verlengde operatieduur, meer bloedverlies en postoperatieve wondinfecties.
Er is onvoldoende bewijs een voorkeur uit te spreken ten aanzien van het plaatsen van een totale heuprothese, een niet-modulaire kop-halsprothese of een modulaire kop-halsprothese. Met betrekking tot de keuze ongecementeerd versus gecementeerd zijn er aanwijzingen dat cementeren van de prothese leidt tot minder bovenbeenklachten, minder revisies op termijn en een betere mobiliteit van de patiënten.

6.4 Verantwoording
EP is de eerste keuze van behandeling bij alle patiënten boven de 80 jaar, patiënten van 65-80 jaar met verminderde vitaliteit (ASA 3) en bij alle patiënten waarbij geen optimale repositie verkregen kan worden. IF is een verantwoorde keuze bij gezonde 65-80 jarigen (ASA 1-2)
- Bewijsniveau 1: therapeutische interventie A 1: meerdere meta-analyses beschikbaar.
Er is geen voorkeur uit te spreken ten aanzien van de chirurgische benadering bij endoprothetische vervanging. Operatieve interventie dient bij voorkeur binnen 24 uur na opname plaats te vinden.
- Bewijsniveau 1: therapeutische interventie niveau A2: meerdere gerandomiseerde trials.
Er zijn aanwijzingen dat het cementeren van de prothese de voorkeur geniet.
- Bewijsniveau 2: therapeutische interventie B; meerdere studies onafhankelijk van elkaar met consistente bevindingen.
Optimale repositie en fixatie is in sterke mate gerelateerd aan het slagen van een osteosynthese.
- Bewijsniveau 2: therapeutische interventie B; meerdere studies onafhankelijk van elkaar met consistente bevindingen.

Bij chronisch immobiele, demente patiënten, waar palliatie (pijnstilling, verpleegbaarheid) het enige behandeldoel is, kan een IF als minimaal invasieve ingreep overwogen worden.
- Bewijsniveau 2: therapeutische interventie A2, één gerandomiseerde trial
Indien na repositie classificatie een Pauwels 3 te zien geeft, is een GHS te verkiezen boven een schroeffixatie.

- Bewijsniveau 3: therapeutisch interventie niveau C: niet vergelijkend onderzoek

Omtrent de indicatie tot spoed ingrijpen bij een mediale collumfractuur in relatie tot kopnecrose kan geen éénduidige conclusie getrokken worden. Operatieve interventie dient derhalve binnen de eerder gestelde algemene termijn van 24 uur na opname te geschieden.

- Bewijsniveau 4: therapeutische interventie: expert opinion met consensus van de leden van de werkgroep.

Figuur 5 **AP opname van de heup: Garden index ter bepaling van varus-valgus dislocatie.**

Garden-hoek:
De Garden hoek is een maat voor de varus-valgus dislocatie. De hoek tussen de mediale cortex van de femurschacht (=as van de femurschacht) en de richting van de mediale groep trabeculae in de femurkop dient 160-180° te zijn. Links een intacte heup, waar de trabeculae goed te zien zijn, rechts een doorlichtingsopname na repositie van een gedisloceerde fractuur.

Let op: de mediale cortex en femurkop sluiten goed aan op elkaar, zodat er geen sprake kan zijn van verkorting.
Figuur 6 Axiale opname van de heup.

De mate van ante- en retroversie wordt bepaald door de as van het collum femoris te bepalen ten opzichte van de lijn tussen het centrum van de kop en het centrum van de fractuur. Deze is optimaal bij 5° anteverzie en 10° retroversie. Er dient geen tot nauwelijks verschuiving te zijn van de kop t.o.v. de hals in dorsale of ventrale richting.

Figuur 7 AP en axiaal beeld van de heup na schroeffixatie.

Technisch goed ingebrachte gecanuleerde schroeven volgens het principe van de driepuntsfixatie. Eerste punt: de schroefdraad geeft fixatie in de femurkop. Tweede punt: de schacht van de onderste dorsale schroef steunt op de achterkant van het collum femoris; de schacht van de onderste ventrale schroef steunt op de onderkant van het collum femoris. Derde punt: de schroefkop steunt op de laterale femurcortex.
Beeld van een Pauwels 3 fractuur, fixatie met GHS.

Doorlichting opname AP rechter heup. Na repositie is het verticaal verlopende fractuurvlak te zien. Aan de mediale zijde van het femur eindigt de fractuurlijn laag in het calcar femoris. Er is sprake van een Pauwels 3 type fractuur met een gemeten hoek > 50° van de fractuurlijn t.o.v. het horizontale vlak. (L). Let op: de mediale cortex en kop sluiten goed aan op elkaar, zodat er geen sprake meer is van verkorting. De fractuur is gestabiliseerd met een glijdende heup schroef, de additionele K-snaar is peroperatief gebruikt om dislocatie tijdens het inbrengen van het implantaat te vermijden. (R)
7 Extracapsulaire fractuur

7.1 Operatieve behandeling

In grote lijnen bestaan er voor pertrochantere femurfracturen 2 behandelingmogelijkheden: extramedullaire (EM) of intramedullaire (IM) fixatie. Bij de keuze tussen deze 2 behandelingmodaliteiten is het onderscheid tussen stabiele (A1) en instabiele (A2 en A3) pertrochantere fracturen van belang. De keuze van het implantaat hangt hierbij in sterke mate af van de mate van instabiliteit van de fractuur: hoe instiabieler de fractuur, des te meer stabiliteit verlangd wordt van het fixatiemateriaal. Biomechanische voordelen van IM osteosynthese zijn aangetoond, klinische resultaten lopen echter uiteen.

Stabiele fracturen (31A1): behandeling extramedullair met een glijdende heupschroef (GHS) geniet de voorkeur. Een GHS is een veilige, simpele, en snelle methode van stabilisatie. Daarnaast is deze methode van behandeling zeer doelmatig, omdat de kosten van het extramedullaire implantaat vooralsnog aanzienlijk lager zijn dan die van een intramedullaire osteosynthese. Als alternatief kan een intramedullaire osteosynthese (IM) toegepast worden.

Instabiele fracturen (31A2 en 31A3): meta-analyses waarin zowel instabiele als stabiele fracturen zijn meegenomen lijken tot op heden in het voordeel van de GHS te pleiten. Als belangrijkste nadeel van de minder invasieve IM osteosynthese wordt het uiteenvallen van het osteosynthesemateriaal genoemd. Hoewel vergelijkend onderzoek tussen eerste en tweede generatie IM implantaten geen significante verbetering te zien geeft, wordt in recentere cohort studies echter bij instabiele fractuurtypen de voorkeur gegeven aan IM behandeling.

Ervaring van de operateur met een bepaald implantaat is vooralsnog van doorslaggevende aard bij de behandeling van instabiele fracturen. Met name bij instabiele fracturen is de positieve invloed van een optimale repositie en adequate positionering van het implantaat op de fractuurgenezing gebleken. De combinatie van adequaat gereponeerde fractuurfragmenten en de juiste methode van fixatie maakt een gecontroleerde impactie van de fractuurfragmenten mogelijk, zodat compressie en daarmee toegenomen stabilititeit kan ontstaan, leidend tot consolidatie van de fractuur. Anatomische repositie en optimale plaatsing van het implantaat dienen te worden nagestreefd.

Operatieve behandeling dient bij voorkeur binnen 24 uur na opname plaats te vinden. Behandeling van acute bijkomende morbiditeit die de vitale functies beïnvloedt heeft prioriteit, optimaliseren van chronische pathologie is zinloos (zie ook 4 Patiëntprofiel).

7.2 Osteosynthese

7.2.1 Techniek repositie

Repositie:

Gesloten repositie met behulp van een tractietafel is de meest aangewezen techniek. Ingeval een gesloten repositie als onvoldoende wordt beoordeeld, dient overgegaan te worden tot een bloedige repositie alvorens met de feitelijke stabilisatiemethode wordt begonnen.

Criteria adequate repositie: (zie Figuur 9).

Het verdient aanbeveling de volgende criteria aan te houden m.b.t. optimale repositie:

- **AP opname:**
 - Caput-collum-diaphyse (CCD)-hoek van het proximale femur dient tenminste 130° te bedragen;
- **Laterale opname:**
 - Er dient een goed alignement te zijn tussen de as van de femurschacht en de as van het collum femoris. Er dient voldoende contactoppervlak (meer dan 50%) te zijn tussen de hoofdfragmenten van de fractuur: caput-collum proximaal en femurdiaphyse distaal.
7.2.2 Techniek fixatie GHS
Bij een GHS wordt via een laterale benadering van de femurschacht de laterale cortex voor de plaatfixatie vrijgeprepareerd. Via deze benadering is tevens een eventuele open repositie van een gedisloceerde fractuur mogelijk. Als eerste wordt de glijdende heupschroef gecanuleerd over een voordraad ingebracht. Optimale positionering van de schroef is op de AP projectie in het centrum of de caudale helft van de kop, met een afstand van 5-10 mm van de tip van de schroef tot de rand van de femurkop (subchondrale bot biedt optimaal houvast). Bij axiale projectie dient de schroef in het centrum van de hals en kop te liggen, dan wel in de dorsale helft (zie Figuur 10).
Na positionering van de heupschroef kan de plaatverbinding op eenvoudige en veilige wijze aan de femurschacht bevestigd worden. De operatietechniek is relatief eenvoudig en veilig.

7.2.3 Techniek fixatie IM osteosynthese
Bij een IM osteosynthese wordt een percutane insertiemethode toegepast, die in verband wordt gebracht met minder peroperatief bloedverlies en een lager infectiepercentage. Vanaf de craniale zijde wordt via een kleine incisie een treepunt naar de mergholte van het femur gecreëerd, die is gelegen om en nabij de tip van de trochanter major. Afhankelijk van het type pen (diameter) zal de mergholte van de femurschacht eventueel opgeboord moeten worden, om een veilige insertie tot in de mergholte te garanderen. Indien niet de precisietechniek wordt toegepast, bestaat het gevaar voor een additionele fractuur van de femurschacht bij het met te krachtig inbrengen van de pen in de femurschacht.
De positie van de heupschroef, of bij sommige typen twee heupschroeven dient dusdanig te zijn, dat op de AP projectie de (meest caudale) schroef in de caudale helft van de hals en kop wordt gepositioneerd, eveneens tot in het subchondrale bot. Op de axiale foto is een centrale of dorsale ligging als optimaal te kwalificeren. Deze positionering is in feite conform de plaatsing van een GHS. (zie figuur Figuur 10).
Distale vergrendeling van de pen in de femurschacht is niet zonder gevaar. Indien de vergrendeling niet goed gelukt, dient men zich te realiseren dat ook dit de kans op een additionele distale fractuur van de schacht met zich mee kan brengen.

7.3 Verantwoording
- Bewijsniveau 1: therapeutische interventie A 1: meerdere meta-analyses beschikbaar.

Instabiele fracturen (31A2 en 31A3): behandeling met een intramedullaire osteosynthese (IM) geniet de voorkeur. Als alternatief kan een extramedullaire behandeling met een glijdende heupschroef (GHS) toegepast worden. Ervaring van de operator met een bepaald implantaat is vooral nog van doorslaggevende aard bij de behandeling van instabiele fracturen.
- Bewijsniveau 2: therapeutische interventie B: meerdere prospectieve cohort studies beschikbaar.

Gesloten repositie is de meest aangewezen techniek. Bij onvoldoende resultaat dient overgegaan te worden tot een bloedige repositie. Optimale repositie en positionering van het implantaat, ongeacht GHS of IM is gerelateerd aan de kans van slagen van de osteosynthese.
- Bewijsniveau 3: therapeutische interventie van niveau C: ondersteund door niet vergelijkend onderzoek
Figuur 9
AP en axiale röntgenopname van een trochantere fractuur na onbloedige repositie.

Trochantere fractuur type 31 A2, optimale reductiecriteria bereikt:
AP: Corpus Collum Diaphyse (CCD) hoek > 130° (L)
Axiaal: goed axiaal alignement en voldoende (vrijwel 100%) contact fractuurdeelen in dorsoventrale richting (R)

Figuur 10
AP en axiale röntgenopname van een 31A1 fractuur met GHS fixatie.

Trochantere fractuur AP, stabilisatie met GHS 135° gepositioneerd in het centrale dan wel caudale deel van de femurkop (L), afstand tot de rand van de kop (centrale deel) < 10 mm.
Trochantere fractuur axiale opname, GHS gepositioneerd in het centrale dan wel het dorsale deel van de femurkop (R), afstand tot de rand van de kop (centrale deel) < 10 mm
Figuur 11 AP en axiale röntgenopname van de heup van een 31A2 fractuur met IM penfixatie

Stabilisatie trochantere fractuur met intramedullaire pen. AP opname: positionering van de caudale schroef in het caudale deel van de nek en de femurkop, indien een implantaat met één schroef in de heup gebruikt wordt, dient de positionering in het centrale tot caudale gedeelte van nek en kop te zijn. Afstand tot de rand van de kop (centrale deel) < 10 mm. (L)
Op het axiale beeld (R) dient de positionering in het centrale of dorsale gedeelte van de kop gelegen te zijn. Afstand tot de rand van de kop (centrale deel) < 10 mm. (L)
8 (Na)behandeling

8.1 Inleiding
De voornaamste postoperatieve complicaties van de heupfractuur zijn diepe veneuze trombose, longembolie, delirium, pneumonie, urineweginfectie, urine-incontinentie, decubitus, en wondinfecties. Snelle mobilisatie en een aantal preventieve maatregelen reduceren de kans op deze complicaties. Op langere termijn spelen osteoporose, verhoogd valrisico en een aantal factoren die onder algemene aspecten zijn samengevat een rol.

8.2 Preventieve maatregelen

8.2.1 Profylactisch antibiotica
Dienen te worden toegediend om de kans op wondinfectie te minimaliseren. Qua uitvoering verdient het aanbeveling de profylaxe maximaal 30 minuten en minimaal 10 minuten voor incisie te geven om optimale bloedspiegels te bereiken. Afhankelijk van de keuze van AB kan volstaan met een eenmalige gift, dan wel maximaal 24 uur postoperatief te continueer. Indien beschikbaar, kan qua keuze het eigen ziekenhuisprotocol gevolgd worden.

8.2.2 Tromboembolische profylaxe
Veneuze tromboembolieën zijn de voornaamste oorzaak van postoperatieve morbiditeit en mortaliteit bij patiënten met een heupfractuur. Risico verhogen de factoren zijn hoge leeftijd, maligniteit, eerdere veneuze tromboembolie, obesitas, hartfalen, paresis, en genetische predispositie. Tromboembolische profylaxe is in principe geïndiceerd. Het verdient aanbeveling alle patiënten lage dosis ongefractioneerd heparine (5000 E. 2dd) of low molecular weight heparine (LMWH) toe te dienen, tenzij gecontra-indiceerd.
Bij contra-indicatie voor heparine is orale antistolling aangewezen met Acenocoumarol vanaf opname, gestreefd dient te worden naar een INR tussen 2 en 3.
Bij contra-indicatie voor heparine en orale antistolling is aspirine (325 mg tot 650 mg per dag) aangewezen.
De profylaxe dient gecontinueerd te worden tot patiënt volledig ambulant is, dan wel op het oude niveau is teruggekeerd.
Deze aanbevelingen zijn geëxtraheerd uit de Richtlijn Tromboseprofylaxe van het CBO (2006).

8.3 Delirium
Tot 61% van de oudere patiënten met een heupfractuur maakt een delirium door. Het delirium is een passagère bewustzijnsstoornis gepaard gaand met stoornissen in aandacht, concentratie en perceptie. Er kan onderscheid worden gemaakt tussen het geagitteerde delier (motorisch onrustig, plukkerig) en het stil delier (apathisch, teruggetrokken). De onderliggende oorzaak is somatisch.
Er zijn 4 basisprincipes voor preventie en management:
• vermijden van factoren die een delirium veroorzaken of verergeren;
• de onderliggende medische aandoening identificeren en behandelen;
• ondersteunende maatregelen nemen;
• gevaarlijk gedrag onder controle brengen.

De beste interventie ter preventie van delirium begint vanaf opname in het ziekenhuis, is multifactorieel en reduceert de kans op het ontstaan van delirium. Een vroeg consult door de klinisch geriater kan ook de kans op het ontstaan van delirium reduceren. Ondersteunende maatregelen zijn van belang om de patiënt zo goed mogelijk te oriënteren.
Farmacologisch management van de symptomen bestaat uit lage dosis neuroleptica (haloperidol) soms in combinatie met benzodiazepines.
8.4 Osteoporose

8.5 Valrisico
Het optreden van heupfracturen is mede gerelateerd aan de verhoogde valneiging bij bejaarden. Inventarisatie van het valrisico is van belang in het kader van preventie van een volgende val met het olopen van letsel. In een vroeg stadium van de opname kan eenvoudig screenend gevraagd worden of de patiënt in het afgelopen jaar, naast deze val die tot de heupfractuur geleid heeft, vaker gevallen is. Indien dit antwoord positief is, is er reden voor verdere inventarisatie. Wij verwijzen naar de Richtlijn Preventie van Valincidenten bij Ouderen CBO (2004) met betrekking tot aanvullende diagnostiek en behandeling.

8.6 Algemene aspecten
Aandacht voor voeding (orale eiwit supplementatie) en een gericht anti-decubitus beleid kunnen complicaties verminderen. Vroege mobilisatie, fysiotherapie, balanstaining, aandacht voor valrisico worden in hoofdstuk 9 nader uitgewerkt, maar zijn evenzo van belang voor de preventie van decubitus en pneumonie. Met betrekking tot preventie van urineweginfecties is het belangrijk om het gebruik van een catheter à demeure zo kort mogelijk te houden, liefst verwijderen <24 uur na de operatie.

8.7 Verantwoording
Antibiotische profylaxe dient te worden toegediend.
• Bewijsniveau 1.

Tromboembolishe profylaxe is geïndiceerd, tenzij contra-indicaties bestaan.
• Bewijsniveau 1.

Interventie ter preventie van delirium begint vanaf opname in het ziekenhuis, is multifactorieel, een vroeg consult door de klinisch geriater is aan te bevelen.
• Bewijsniveau 1.

De antibiotische profylaxe dient maximaal 30 minuten en minimaal 10 minuten voor incisie gegeven te worden (optimale spiegels bereikt). Afhankelijk van de keuze van AB kan volstaan worden met een eenmalige gift, dan wel maximaal 24 uur postoperatief te continueren.
• Bewijsniveau 2.

Aandacht voor voeding, vroege mobilisatie, en een gericht antidecubitus beleid kunnen complicaties verminderen. Met betrekking tot urineweginfecties is het belangrijk om het gebruik van een catheter à demeure zo kort mogelijk te houden, liefst verwijderen <24 uur na de operatie.
• Bewijsvoering: niveau 2.

Farmacologisch management van het delirium bestaat uit lage dosis neuroleptica (haloperidol) soms in combinatie met benzodiazepines.
• Bewijsniveau 2: therapeutische interventie B: meerdere prospectieve cohort studies beschikbaar.
Algemeen:
9 Fysiotherapie

9.1 Inleiding
Het algemene doel van fysiotherapie bij de behandeling van de proximale femurfractuur bij de oudere mens is de patiënt weer belast te mobiliseren op geleide van de pijn. Altijd zal de belasting moeten worden afgestemd op de belastbaarheid. Daarnaast zal geprobeerd worden om complicaties en morbiditeit te voorkomen (pneumonie, decubitus e.d.) Aan de hand van het patiëntprofiel kan verder invulling worden gegeven aan de doelen van de behandeling. (Het optimaal haalbare en/of het verkrijgen van het preëxistente niveau van functioneren.) De specifieke uitvoering van de fysiotherapie is afhankelijk van de verblijfplaats van de patiënt en is grofweg onder te verdelen in tijdsvensters:
• het verblijf in het ziekenhuis;
• de periode daarna in ofwel thuissituatie of een meerdere begeleide situatie door middel van flankerend beleid in een verzorgingshuis, en met name de revalidatie-afdeling van een verpleeghuis.

9.2 Behandelingsafhankelijke aspecten

9.2.1 Conservatieve behandeling bij niet gedisloceerde mediale collumfractuur (GMC)
Op geleide van de pijn die de patiënt aangeeft, wordt de mate van belasting aangepast, met 2 krukken partiële (20 kg) belasten tot 8 weken na het ongeval
• Vermijden adductie;
• Aandacht voor specifieke complicaties: secundaire dislocatie;
• Als meer pijn wordt aangegeven: röntgencontrole!

9.2.2 Na osteosynthese: intramedullaire fixatie of plaat/schroeffixatie
In principe nabehandeling volgens algemeen belast schema.
• Vermijden adductie en heffen met gestrekt been in verband met grote krachten op de breuk en het fixatiemateriaal;
• Aandacht voor specifieke complicaties: secundaire instabiliteit;
• Als meer pijn wordt aangegeven: röntgencontrole!

9.2.3 Na prothesiologie: kop-halsprothese of totale heupprothese
In principe nabehandeling volgens algemeen belast schema
• Aandacht voor specifieke complicaties: luxatie;
• Instructies ter preventie van luxatie zijn afhankelijk van de benaderingswijze van de heup tijdens operatie;
• Voorste benadering: vermijden exorotatie, abductie en (hyper-)extensie;
• Achterste benadering: vermijden endorotatie, adductie en flexie <90°;
• Laterale benadering: vermijden adductie.

9.3 Verantwoording
Er is geen literatuur beschikbaar ter onderbouwing.
• Bewijsniveau 4: therapeutische interventie: expert opinion met consensus van de leden van de commissie.
10 Resocialisatie

10.1 Inleiding

Een groot probleem vormt de revalidatie en resocialisatie van de oudere patiënt. Als behandeldoel kan gesteld worden, dat de patiënt weer zo snel mogelijk in de eigen woonomgeving wordt gereïntegreerd. 60% van de patiënten woonde thuis voor de fractuur, waarvan een deel in een wankel evenwicht, 25% woont semi-zelfstandig in een verzorgingshuis en heeft voorspelbaar veel moeite met revalidatie tot een acceptabel niveau. Door een tekort aan verpleeghuis- en revalidatiefaciliteiten ontstaan een groot probleem, gekenmerkt als het “verkeerde bed”. Dit resulteert in een onnodig lang verblijf het ziekenhuis, waar onvoldoende aandacht aan het herstel kan worden gegeven. Minder dan de helft van deze (semi)-zelfstandig functionerende patiënten keert al dan niet na een tijdelijk verblijf in een revalidatie-instelling uiteindelijk terug naar het eigen woonniveau.

De resterende groep (15%) is reeds afhankelijk en woonachtig in een somatisch of psychogeriatrisch verpleeghuis. Hier kan over het algemeen een snelle terugplaatsing naar de oorspronkelijke woonomgeving worden geregeld. Een deel van deze patiënten is tevoren reeds slecht ter been of zelfs immobiel, waarbij de behandeling zich concentreert op palliatie in de vorm van adequate pijnstilling en verpleegbaar/verzorgbaar maken van de patiënt.

Er is geen overtuigend bewijs dat gerichte revalidatieprogramma’s een gunstig effect hebben op het herstel van functioneren van heupfractuurpatiënten op de lange termijn. Er zijn wel aanwijzingen dat multidisciplinaire geïntegreerde zorg (samenwerking orthopedie/geriatrie) een gunstig effect heeft op ziekenhuisopnameduur, herstel van functioneren op de korte termijn en kans op direct ontslag naar de eigen preëxistente woonomgeving vanuit het ziekenhuis. In de Nederlandse situatie heeft men bij versneld ontslag uit het ziekenhuis echter geen effect op mortaliteit, functioneren na 4 maanden, kwaliteit van leven en kosten aan kunnen tonen. Ons inziens is het echter aan te bevelen de zorg rondom heupfractuurpatiënten op dezelfde manier te organiseren als de stroke-services, waarmee bij neurologische patiënten met een cerebrovasculair accident ruim ervaring is opgedaan.

10.2 Verantwoording

Het nut van gerichte revalidatieprogramma’s bij patiënten met een heupfractuur is op de lange termijn niet aangetoond.

- Bewijsniveau 1.

Multidisciplinaire geïntegreerde zorg heeft een gunstig effect op ziekenhuisopnameduur, herstel van functioneren op de korte termijn en kans op direct ontslag naar huis vanuit het ziekenhuis.

- Bewijsniveau 2.

Zorg rondom heupfractuurpatiënten kan op dezelfde manier vorm geven worden als bij stroke-services, in zogenaamde ketenzorg.

- Bewijsniveau 4.
Bijlage 1 Definities en afkortingen

<table>
<thead>
<tr>
<th>Code</th>
<th>Definitie</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Antero-Posterieur</td>
</tr>
<tr>
<td>CCD</td>
<td>Caput-collum-diaphyse hoek</td>
</tr>
<tr>
<td>EM</td>
<td>Extramedullair</td>
</tr>
<tr>
<td>EP</td>
<td>Endoprothese</td>
</tr>
<tr>
<td>GHS</td>
<td>Glijdende heupschroef</td>
</tr>
<tr>
<td>GMC</td>
<td>Geïnclaveerde mediale collumfractuur</td>
</tr>
<tr>
<td>IF</td>
<td>Interne fixatie</td>
</tr>
<tr>
<td>IM</td>
<td>Intramedullair</td>
</tr>
<tr>
<td>LMWH</td>
<td>Low molecular weight heparine</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini Mental State Examination</td>
</tr>
<tr>
<td>RR</td>
<td>Relatief Risico</td>
</tr>
<tr>
<td>SIRS</td>
<td>Severity of Illness Rating Scale</td>
</tr>
</tbody>
</table>
Bijlage 2 ASA score

Preoperatieve classificatie volgens de richtlijnen van de American Society of Anesthesiologists (ASA) ter bepaling van de risico's m.b.t. morbiditeit en mortaliteit t.g.v. een operatie

<table>
<thead>
<tr>
<th>ASA</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA 1</td>
<td>Volledig gezond.</td>
</tr>
<tr>
<td>ASA 2</td>
<td>Enige mate van ziek zijn, maar geen gevolgen voor dagelijkse activiteiten; ziekte zonder symptomen, bv. hypertensie.</td>
</tr>
<tr>
<td>ASA 3</td>
<td>Symptomatische ziekte, maar met weinig beperkingen, bv. goed ingestelde diabetes mellitus.</td>
</tr>
<tr>
<td>ASA 4</td>
<td>Symptomatische ziekte met ernstige functionele beperkingen, bv. ernstige COPD, instabiele diabetes mellitus.</td>
</tr>
<tr>
<td>ASA 5</td>
<td>Moribund</td>
</tr>
</tbody>
</table>

Bijlage 3 Mobiliteitsscore volgens Parker en Palmer

Eenvoudig mobiliteitsscore volgens Parker en Palmer, op SEH bij opname te inventariseren: 0-9 punten

<table>
<thead>
<tr>
<th>Mobilitéit</th>
<th>Geen probleem</th>
<th>Met hulpmidden</th>
<th>Met behulp van derden</th>
<th>Niet mogelijk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kan zich binnenshuis verplaatsen</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kan zich buitenhuis verplaatsen</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kan boodschappen doen</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Bijlage 4 Barthel index

Gedifferentieerde mobiliteits- en zelfredzaamheidsscore m.b.v. Barthel Index: 0-20 punten

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfers</td>
<td>0-3*</td>
</tr>
<tr>
<td>Lopen</td>
<td>0-3</td>
</tr>
<tr>
<td>Traplopen</td>
<td>0-2**</td>
</tr>
<tr>
<td>Voeding</td>
<td>0-2**</td>
</tr>
<tr>
<td>Uiterlijke verzorging</td>
<td>0-1***</td>
</tr>
<tr>
<td>Baden</td>
<td>0-1***</td>
</tr>
<tr>
<td>Aan- en uitkleden</td>
<td>0-2**</td>
</tr>
<tr>
<td>Toiletgebruik</td>
<td>0-2**</td>
</tr>
<tr>
<td>Continent van urine</td>
<td>0-2****</td>
</tr>
<tr>
<td>Continent van defaecatie</td>
<td>0-2****</td>
</tr>
</tbody>
</table>

response options:
* afhankelijk (0); veel hulp (1); enige hulp (2); onafhankelijk (3)
** afhankelijk (0); enige hulp (1); onafhankelijk (2)
*** afhankelijk (0); onafhankelijk (1)
**** incontinent (0); gedeeltelijk continent (1); continent (2)
Bijlage 5 MMSE score

<table>
<thead>
<tr>
<th>Gedifferentieerde bepaling van het cognitief functioneringsniveau: MMSE score: 0-30 punten</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Oriëntatie</td>
<td>Welke dag is het vandaag: datum; maand; seizoen; jaar</td>
</tr>
<tr>
<td></td>
<td>Kunt u me vertellen waar u nu bent: ziekenhuis; afdeling; stad; provincie; land</td>
</tr>
<tr>
<td>B Registratie</td>
<td>Drie woorden. Wilt u die herhalen: “boek, plant, molen”. (1 seconde per woord) (Indien problemen, dan herhalen totdat patiënt de 3 woorden weet, maar dan geen punten geven)</td>
</tr>
<tr>
<td></td>
<td>Onthoud de 3 dingen goed, want over een paar minuten zal ik u vragen het rijtje opnieuw te herhalen.</td>
</tr>
<tr>
<td>C Aandacht</td>
<td>Wilt u van 100 zeven aftrekken, dan weer 7 aftrekken, en zo doorgaan? (1 punt per goed antwoord, stoppen bij 65 of na 5 antwoorden; foute antwoorden niet verbeteren)</td>
</tr>
<tr>
<td></td>
<td>(of indien rekenen niet mogelijk is: Wilt u het woord DORST van achteren naar voren spellen? …T;…S;…R;…O;…D)</td>
</tr>
<tr>
<td>D Geheugen</td>
<td>Noemt u nogmaals de 3 woorden van zojuist: “boek, plant, molen”</td>
</tr>
<tr>
<td>E Taal</td>
<td>Wat is dit (potlood)? Wat is dit (horloge)? Wijs een potlood aan en daarna een horloge.</td>
</tr>
<tr>
<td></td>
<td>Wilt u de volgende zin herhalen; “geen, als en of maar”</td>
</tr>
<tr>
<td></td>
<td>Pak dit papier met de rechterhand, vouw het dubbel en leg het daarna op schoot. (1 punt per goede handeling)</td>
</tr>
<tr>
<td></td>
<td>Wilt u dit lezen en opvolgen. (kaart met de zin “Sluit de ogen” voor patiënt leggen).</td>
</tr>
<tr>
<td></td>
<td>Wilt u voor mij een zin opschrijven? (onderwerp en werkwoord)</td>
</tr>
<tr>
<td>F Constructie</td>
<td>Wilt u dit figuur natekenen. (papier en potlood en kaart met figuur voor patiënt; 1 punt als alle zijden en hoeken getekend zijn en er twee snijpunten zijn)</td>
</tr>
</tbody>
</table>

Totaal 0-30

Afkappunt: 23/24 punten

Geef 1 punt voor ieder correct antwoord.

Interpretatie van het resultaat:
- score 24-30 punten: geen cognitief deficit
- score 20-23 punten: mild cognitief deficit
- score 14-19 punten: matig cognitief deficit
- score 0-13 punten: ernstig cognitief deficit
Bijlage 6 Praktisch voorbeeld van een klinisch behandelschema met belaste mobilisatie

Dag 1

Doel: spiergevoel en -activiteit bevorderen
 → Patiënt start met oefeningen op bed voor voet en enkel plus muscle setting exercises van o.a. de quadriceps en de glutëi.
 Doel: zitten ter preventie van complicaties cardiopulmonaal.
 → Patiënt moet geverticaliseerd worden, indien mogelijk op de stoel.
 → Patiënt krijgt eerste instructies over risicobewegingen (indien van toepassing zoals bijvoorbeeld bij totale heup vervanging). Dat gebeurt zowel mondeling als schriftelijk.

Dag 2

Doel: zelfstandig in/uit bed kunnen komen.
 ➔ START OEFENEN VAN ZELFSTANDIGE TRANSVERS NAAR DE STOEL EN LATER OOK TERUG NAAR BED
 → Start cryotherapie (ijspakking) bij haematomen met pijn. (N.B. het drukverband zit er de eerste dag nog omheen, waardoor de ijsprikkel niet kan aankomen en bovendien zie je het haematoom/wond niet.)
 Doel: zelfstandig en veilig kunnen (op-)staan en lopen.
 → Zo mogelijk start met sta- en loopoefeningen met (eigen) hulpmiddel. Extra aandacht voor techniek van opstaan en gaan zitten gerelateerd aan risicobewegingen.

Dag 3

Doel: spierkracht vergroten, angst overwinnen/ durven te bewegen
 → Start extra oefeningen op de stoel
 Doel: groter veiligheidsgevoel ontwikkelen naast grotere stabiliteit opbouwen.
 → Start stabilitietoefeningen in stand en tijdens lopen.

Dag 4-6

Doel: zelfstandig lopen.
 → Optimaliseren v/h looppatroon. Let op de extensie!!
 Doel: contractuurpreventie / extensiebevordering.
 → Buikligging (draaien over geopereerde zijde, m.n. bij endoprothese)

Dag 7-10

Doel: mobiliteit en spierkracht, actieradius en ADL activiteiten uitbreiden.
 → Afhankelijk van voldoende herstel van de patiënt (snel) overplaatsing naar thuissituatie / eigen omgeving met continuering van fysiotherapie.
Bijlage 7 Fysiotherapeutische overdracht

Standaard overdracht, aankruisen wat van toepassing is.

Operatiedatum: …./…./..... ; Ontslagdatum: …../…../.....

Diagnose/ Opname-indicatie:
☐ Mediale collumfractuur
☐ Intertrochantere femurfractuur
☐ ……………………………………………………………………………… …………………….

Behandeling:
☐ Conservatieve behandeling geïnclaveerde mediale collumfractuur
☐ Osteosynthese door middel van schroeven
☐ Osteosynthese door middel van glijdende heupschroef
☐ Osteosynthese door middel van intramedullaire pen
☐ Kop-halsprothese (dorsolaterale / voorste / laterale benadering)
☐ Totale heupprothese (dorsolaterale / voorste / laterale benadering)
☐ …………………………………………………………………………………………………….

Relevante medische gegevens:
……
……
……

Beloop klinische behandeling:
☐ Ongecompliceerd
☐ Gecompliceerd
……
……
……

Toegestane belasting:
☐ , onbelast
☐ , partieel………..
☐ , volledig

Loophulpmiddel:
☐ , rekje/rollator;
☐ , 1 / 2 elleboog-, schaalkrukken;
☐ , 1 / 2 handstokken
Bijlage 8 Uitvoering met gebruik van hulpmiddelen

Hulpmiddel aan één zijde:
- 2-telsgang (2-puntsgang)
 de stok wordt tegelijkertijd naar voren verplaatst met het tegengestelde (aangedane) been tot op dezelfde lijn. Daarna wordt het andere been een stap naar voren geplaatst;
- 3-telsgang (3-puntsgang)
 Eerst wordt de stok naar voren geplaatst. Daarna wordt het tegengestelde been naar voren geplaatst op dezelfde lijn als de stok. Hierna wordt het andere been een staplengte naar voren geplaatst.

Hulpmiddel aan twee zijden:
- 2-tels diagonaalgang of 2-puntsgang
 Het hulpmiddel in de linkerhand wordt tegelijk met de rechter voet naar voren geplaatst en het hulpmiddel in de rechter hand tegelijk met de linker voet. Hiervoor is een betere in de romp nodig dan bij de 4-telsgang;
- 4-tels diagonaalgang of 4-puntsgang
 Eerst wordt de kruk aan de ‘gezonde’zijde naar voren gezet daarna het aangedane been tot naast de kruk. Vervolgens wordt de stok aan de aangedane zijde naar voren gezet voorbij de 1e stok waarna het ‘gezonde’been naast de tweede kruk wordt geplaatst. Er is nooit meer dan één punt los van de grond;
- Driehoeksgang
 Beide hulpmiddelen worden samen met het aangedane been op één lijn geplaatst. Het andere been wordt er een staplengte vóór geplaatst. Gaan de hulpmiddelen tegelijk dan spreek je van een 2-tels driehoeksgang en gaan de hulpmiddelen ná elkaar dan spreek je van een 3-tels driehoeksgang;
- Zwaagang
 Beide hulpmiddelen worden tegelijkertijd naar voren geplaatst en de beide benen worden in één zwaai tegelijkertijd naar voren geplaatst. Gaan de benen tot de lijn waar ook de stokken staan dan is dat “swing to the gate” en gaan de benen voorbij die lijn dan spreek je van “swing through the gate”.
Bijlage 9 Risicoscore osteoporose (richtlijn CBO)

1. Heeft u wel eens iets gebroken na het 50e levensjaar?
2. Heeft u een of meerdere ingezakte rugwervels?
3. Komt botontkalking in uw familie voor? (heupfractuur bij moeder?)
4. Weegt u minder dan 60 kg als vrouw of minder dan 67 kg als man?
5. Ligt u meer dan 20 uur per dag in bed of op de bank?
6. Gebruikt u corticosteroïden ≥ 7,5 mg prednison equivalent per dag?

Overzicht van risicofactoren voor heup- en wervelfracturen

<table>
<thead>
<tr>
<th>Risicofactor</th>
<th>Heupfractuur RR</th>
<th>Wervelfractuur RR</th>
<th>Niveau van bewijs*** ****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractuur na 50ste jaar</td>
<td>1,5-2,9</td>
<td>4,1-5,8</td>
<td>1</td>
</tr>
<tr>
<td>Wervelfractuur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familie (heupfractuur bij moeder)</td>
<td>1,8-3,7</td>
<td>1,3 ***</td>
<td>2</td>
</tr>
<tr>
<td>Corticosteroïden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednison 2,5-7,5 mg/dag</td>
<td>1,6-2,0</td>
<td>2,2-3,1</td>
<td></td>
</tr>
<tr>
<td>Prednison ≥ 7,5 mg/dag</td>
<td>1,9-2,7</td>
<td>4,3-6,3</td>
<td></td>
</tr>
<tr>
<td>Gewicht < 67 kg</td>
<td>2,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lengte per 10 cm toename</td>
<td>1,6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Ernstige immobiliteit *</td>
<td>1,2-3,6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Veel lichaamsbeweging **</td>
<td>0,7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Visusstoornis</td>
<td>1,4-1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langwerkende benzodiazepines</td>
<td>1,6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Anti-epileptica</td>
<td>2,0-2,8</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Hyperthyreoïdie</td>
<td>1,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) In verschillende studies: minder spierkracht, evenwicht- een loopstoornis
**) Veel wandelen
****) Bij mannen
****** Bron CBO, Tweede Herziene Richtlijn Osteoporose

Bijlage 10 Screening valrisico (richtlijn CBO)

1. Bent U thuis gevallen en/of heeft u een bot gebroken ten gevolge van een val in het afgelopen jaar?
2. Gebruikt u slaaptabletten of vier of meer medicijnen?
3. Is er sprake van een ernstige ziekte zoals morbus Parkinson, dementie, gewrichtsslijtage van knie of heup, beroerte of iets anders dat het evenwicht beïnvloedt?
4. Kon U makkelijk opstaan vanuit een stoel op kniehoogte (een stoel waarbij de voeten plat op de vloer zijn en de knieën in een rechte hoek)
5. Heeft u een probleem met het zien, dat invloed heeft op uw zelfvertrouwen of uw vaardigheid vermindert in het uitvoeren van taken?
6. Zijn er problemen met duizeligheid die niet eerder onderzocht zijn en/of moeilijkheden met het evenwicht geven of die onveiligheid veroorzaken?

Als één of meer van de vragen met ja wordt beantwoord, dan is er aanleiding te verwijzen voor nader onderzoek.
Richtlijn
Behandeling van de proximale femurfractuur bij de oudere mens

2E TRANCHE
Inhoudsopgave

1 **FRACHTUURCLASSIFICATIE** .. 4
1.1 **INLEIDING** .. 4
1.2 **CONVENTIONEEL RÖNTGENONDERZOEK VAN DE HEUP EN HET PROXIMALE FEMUR** 4
 1.2.1 De Anterior-Posterior (AP) bekkenopname .. 4
 1.2.2 De axiale of laterale heupopname .. 6
1.3 **MEDIALE COLLUMFRACTUUR** .. 9
1.4 **TROCHANTERE FEMURFRACTUUR** .. 15

2 **PATIËNTPROFIEL** .. 19
 2.1 **INLEIDING** .. 19
 2.2 **PROGNOSTISCHE FACTOREN** ... 19
 2.3 **PRE-OPERATIEF DELAY** .. 20

3 **THERAPIE GEÎNCLAVEERDE MEDIALE COLLUMFRACTUUR** ... 21

4 **THERAPIE GEDISLOCEERDE MEDIALE COLLUMFRACTUUR** .. 27
 4.1 **INLEIDING** .. 27
 4.2 **KEUZE VAN BEHANDELING** .. 27
 4.2.1 **Voor- en nadelen van IF tegenover arthroplastiek** .. 27
 4.2.2 **Individuele factoren** ... 27
 4.2.3 **Mortaliteit, revisie, functie en pijnklachten na IF en arthroplastiek** 28
 4.2.4 **Morbiditeit na IF en arthroplastiek** ... 28
 4.2.5 **Complicaties na arthroplastiek** ... 28
 4.2.6 **Techniek interne fixatie** .. 28
 4.2.7 **Techniek endoprothetische plaatsing** .. 31

5 **EXTRACAPSULARE FRACTUUR** ... 33
 5.1 **INTEGREDIENTIE** ... 33
 5.2 **REPPOSITIE** .. 33
 5.3 **FIXATietechniek** .. 34
 5.4 **IMPLANTAATKEUZE** ... 34
 5.5 **GERANDOMISEERDE STUDIES SINDS 1990** ... 35
 5.5.1 Intramedullair versus extramedullair .. 35
 5.5.2 Extramedullaire behandelingstypen .. 36
 5.5.3 Intramedullaire behandeling .. 36
 5.6 **ANDERE (NIET GERANDOMISEERDE) STUDIES OVER INSTABIELE PERTROCHANTERE FRACTUREN** 37
 5.6.1 **Glijdende plaat/schroefsystemen (GHS)** ... 37
 5.6.2 **Gamma Nail®** .. 37
 5.6.3 **Proximal Femoral Nail®** ... 37
 5.6.4 **Biomechanische studies** ... 37
 5.7 **DISCUSSION** ... 37
 5.8 **CONCLUSIE** .. 38

6 **(NA)BEHANDELING** ... 41
 6.1 **OSTEOPOROSE** ... 41
 6.2 **VALRISICO** .. 41

7 **FYSIOOTHERAPIE** .. 43
 7.1 **INLEIDING** .. 43
 7.2 **LOPEN MET HULPMIDDELEN** ... 43
 7.2.1 **Rekje** .. 43
 7.2.2 **Rollator** ... 44
 7.2.3 **Elleboogkrullen** ... 44
 7.2.4 **Handstokken** .. 44
8 RESOCIALISATIE... 46

8.1 INTRODUCTIE.. 46
8.2 FUNCTIONELE STATUS.. 46
8.3 MAATSCHAPPELIJK FUNCTIONEREN... 46
8.4 ONTSLAGBELEID.. 47
8.5 AANBEVELINGEN.. 48

Tabellen

Tabel 1 Severity of Illness Rating Scale (SIRS) per orgaansysteem....................................... 20
Tabel 2 Resultaten van de niet-operatieve (functionele) behandeling van de GMC.................. 22
Tabel 3 Resultaten van de primaire osteosynthese van de GMC... 23
Tabel 4 Invloed van risicofactoren op het ontstaan van secundaire instabiliteit na een geïnclavieerde mediale collumfractuur .. 25
Tabel 5 Linkerkolom: patiënten met genezen fracturen. Rechterkolom: patiënten met SI 26
Tabel 6 Voor- en nadelen van IF en arthroplastiek ... 27
Tabel 7 Overzicht van de resultaten van gerandomiseerde studies IF versus EP 29
Tabel 8 Gerandomiseerde onderzoeken naar de behandelingssresultaten van instabiele pertrochantere fracturen ... 39
Tabel 9 Overzicht van gerandomiseerde studies naar de behandeling van pertrochantere fracturen, niet specifiek uitgesplitst voor stabiele en instabiele fracturen .. 40
Tabel 10 Risicofactoren in het kader van case finding met een schatting van het fractuurrisico 41
Tabel 11 Revalidatie Activiteiten Profiel (RAP)... 46
Tabel 12 Maatschappelijk functioneren... 47

Figuren

Figuur 1 Positionering van de patiënt voor AP bekkenfoto... 5
Figuur 2 Modelopname van een AP bekkenfoto... 6
Figuur 3 Geen endorotatie toegepast: verkort collum van beide femora en teveel trochanter minus in beeld .6
Figuur 4 Positionering patiënt voor laterale heupopname... 7
Figuur 5 Modelopname laterale heup.. 7
Figuur 6 Schematische tekening laterale heupopname .. 8
Figuur 7 Pauwels classificatie ... 9
Figuur 8 Garden classificatie.. 12
Figuur 9 AO classificatie collumfractuur .. 14
Figuur 10 Mediale collum: fractuurclassificatie .. 14
Figuur 11 Evan’s classificatie trochanter femurfracturen... 15
Figuur 12 De AO classificatie voor trochanter femurfracturen .. 16
Figuur 13 Trochantere fracturen: classificatie .. 18
Figuur 14 Mechanica van de geïnclavieerde mediale collumfractuur 21
Figuur 15 Garden index zijdelings (links) en voor/achterwaarts (rechts) 25
Figuur 16 Onderbreking in de voorste cortex van de dijbeenhalss .. 25
Figuur 17 Laterale opname met en zonder correctie anteversiehoek.................................... 34
1 Fractuurclassificatie

1.1 Inleiding
Falen van fractuurbehandeling wordt frequent veroorzaakt door een verkeerde keuze van fixatie, of door misinterpretatie van het verloop van de fractuur. Het brede scala aan verschillende trochantere fracturen en de toenemende hoeveelheid implantaten maken de keuze van een juiste fixatiemethode vaak tot een ware uitdaging. Systematisch classificeren van de fracturen kan leiden tot een beter inzicht in het fractuurverloop, en kan de keuze van het juiste implantaat voor een specifieke fractuur vergemakkelijken.

In het algemeen moet een goede classificatie voldoen aan vier voorwaarden. Het moet voorzien in richtlijnen voor de behandeling, het moet een systeem zijn waarmee we (behandel)resultaten kunnen rapporteren, scoren en vergelijken, het moet een goede methode van communicatie zijn, en het moet reproduceerbaar en betrouwbaar zijn. Vele auteurs hebben de betrouwbaarheid en reproduceerbaarheid van diverse classificaties onderzocht. Sommige classificatiesystemen zijn met name gebaseerd op de specifieke fractuurlocalisatie en het verloop, zoals bijvoorbeeld de Lauge-Hansen classificatie en de Danis-Weber classificatie voor enkelfracturen, de Garden classificatie voor collumfracturen, de Ruedi-Allgower classificatie voor de distale tibia pilon en de Neer classificatie voor subcapitale humerusfracturen. De AO/ASIF classificatie voorziet in een systematische richtlijn voor classificatie van fracturen in alle lange pijpbeenderen.

1.2 Conventioneel röntgenonderzoek van de heup en het proximale femur
Routine röntgenonderzoek van de heup houdt in: AP röntgenopname van het bekken en axiale röntgenopname van de zijde, waar de fractuur vermoed wordt.

Een AP foto van het gehele bekken met beide heupgewrichten erop moet worden gemaakt zodat enerzijds vergeleken kan worden met de contralaterale zijde en anderzijds het os pubis kan worden beoordeeld. Dit laatste is belangrijk als patiënten pijn aangeven, maar het femur normaal is. Dysplastische en degeneratieve veranderingen zijn over het algemeen bilateraal. Bij obesitas kunnen huidplooien fracturen nabootsen. Deze kunnen van fracturen worden onderscheiden omdat huidplooien meestal doorlopen in de weke delen.

1.2.1 De Anterior-Posterior (AP) bekkenopname
Bij het maken van de AP bekkenopname ligt de patiënt horizontaal op de röntgentafel. Beide spinae iliacae anterior superior zijn op gelijke afstand van de zijkant van de röntgentafel. Beide benen worden 15 graden geëndoroteeerd om de normale anteversie van het collum femoris te compenseren. De lengteas van het femur ligt parallel aan de filmcassette (35cm x 43cm). Middels een steun onder beide knieën kunnen endorotatie en parallelliteit van de femora worden gekeerd.
Endoratie levert een betere beoordeling van het collum femoris op. Indien het been niet geëndoroteerd is, kan het collum femoris voor de niet geofende beoordelaar het beeld van een verkort collum of een geïmpacteerde/geïnclaveerde mediale collumfractuur geven. Meestal verraadt een geïmpacteerde fractuur zich echter door een dunne sclerotische botlijn.

De begrenzing gesteld aan de opname is dat deze: craniaal de crista iliaca bevat, caudaal het proximale eenderde van het femur en lateraal de beide trochantermassieven (Figuur 2). De centrale röntgenstraal loopt verticaal en staat loodrecht op het middelpunt van de cassette. Het gehele bekken moet worden gezien inclusief proximale eenderde deel femora met beide femurkoppen. Er mag geen rotatie van het bekken zijn (trochanters even groot en vrij van overprojectie). De trochanter minus mag beiderzijds nauwelijks uitsteken boven de mediale femurcortex, hetgeen geïnterpreteerd kan worden als ontbreken van verkorting van het collum. Figuur 3 geeft een voorbeeld van een beiderzijds verkort collum femoris. De opname is zonder endorotation van de benen gemaakt.
Figuur 1 Positionering van de patiënt voor AP bekkenfoto
1.2.2 *De axiale of laterale heupopname*

Bij de niet-traumapatiënt kan de laterale opname goed worden verkregen met het been in maximale exorotatie, 40 graden geabduceerd en de knie in 90 graden flexie (zogenaamde frog-leg positionering).

Bij de patiënt met een vermoedde fractuur van het collum of proximale femur moet de laterale opname van de heup met de zogenaamde Danielus-Miller modificatie van de Lorenz methode worden verricht (Figuur 4).

De patiënt ligt in rugligging op de röntgentafel. De bovenste begrenzing van de filmcassette (24cm x 30cm) wordt net boven het niveau van de crista iliaca geplaatst. De naamplaat met patiëntidentificatie behoort distaal te liggen. De filmcassette komt parallel te liggen aan de lengteas van het collum femoris. Het middenpunt van de cassette behoort te liggen achter het collum femoris. De lengteas van het collum femoris kan als volgt worden verkregen: het middenpunt van de lijn tussen de spinae iliacae anterior superior en het tuberculum pubicum aan de aangedane zijde wordt bepaald. De lijn vanuit dit punt naar de (palpabele) laterale begrenzing van de trochanter major toe ligt parallel aan het collum femoris.

Het “gezonde” been wordt in de heup geflecteerd en met een toepasselijke ondersteuning weggewezen van het centrale pad van de röntgenstraal, die horizontal loopt en loodrecht op de cassette staat. Het been waarin de fractuur wordt vermoed moet bij voorkeur 15° worden geëndoroteerd om zuiver laterale projectie te verkrijgen. Dit is uiteraard alleen mogelijk indien de conditie van de patiënt dit toelaat. Het collum femoris staat centraal in
beeld, met minimale overprojectie van het collum femoris over de trochanter major. De tuberositas ischiadicum is altijd dorsaal geprojecteerd (zie ook techniek osteosynthese voor peroperatieve doorlichtingtechniek).

Figuur 4 Positionering patiënt voor laterale heupopname

Figuur 5 Modelopname laterale heup
Figuur 6 Schematische tekening van een laterale heupopname

GT = trochanter major; LT = trochanter minor; IT = tuber ischiadicum

Gt = trochanter major
Lt = trochanter minor
1.3 Mediale collumfractuur

Relevant is de vraag of het zin heeft om de Pauwels classificatie te hanteren als leiddraad voor de te kiezen behandeling. Hierop zal nader ingegaan worden in de hoofdstukken conservatieve behandeling en osteosynthese van de mediale collumfractuur.

Figuur 7 Pauwels classificatie
Garden’s classificatie (Garden 1961) is een *biologische* en berust op de veronderstelling dat met toenemende dislocatie de vascularisatie meer te lijden heeft en de kans op kopnecrose groter wordt (}
Figuur 8).

Ook in deze indeling is type 1 de geïnclaveerde collumfractuur. Garden claimde dat type 2 niet-gedisloceerd is maar laat in geen van zijn publicaties een axiale röntgenfoto zien, waarop, naar wij inmiddels weten, vrijwel altijd een standafwijking in de zin van retroversie te zien is, typisch voor een geïnclaveerde fractuur. Aan het bestaan van Garden's type 2 moet daarom getwijfeld worden. In de classificatie van Garden wordt door de velen, die hem citeerden, aan het meest gedisloceerde type 4 de grootste kans op kopnecrose toegeschreven. Dat is onjuist. Garden stelt in het oorspronkelijke artikel, waarin hij de classificatie presenteert, wel dat type 4 het lastigst te reponeren is en verklaart daarmee dat in zijn serie van type 3-fracturen slechts 7% pseudo-artrose gezien werd tegen 43% in type 4. De percentages voor kopnecrose waren daarentegen 18% en 6%! De verschillen in genezing zowel als kopnecrosefrequentie tussen types 3 en 4 blijken in een studie die ruim 1500 fracturen beschrijft, niet meer te reproduceren. In feite is ook deze classificatie terug te brengen tot een indeling in geïnclaveerde en gedisloceerde fracturen. Tenslotte is de "interobserver variation" voor de indeling volgens Garden onaanvaardbaar groot. Detaillering van de classificatie beperkt dus de reproduceerbaarheid. Desondanks weet de Garden classificatie zich in de meeste handboeken prominent te handhaven.
Figuur 8 Garden classificatie

Garden I: incomplete fractuur, femurkop in valgus positie
Garden II: complete fractuur, niet gedisloceerd
Garden III: femurkop in varuspositie, incomplete dislocatie
Garden IV: femurkop teruggekeerd in anatomische positie, complete dislocatie

De AO-classificatie is nog complexer en onderscheidt maar liefst 9 subtypes naar dislocatie van de fractuur respectiefelijk localisatie in de hals (lateraal, mediaal)
Figuur 9). Deze classificatie wordt weinig gebruikt.
Deze eerste indeling volgens Colles heeft nog steeds zin omdat zowel behandeling als prognose van deze twee fractuurtypen wezenlijk verschilt: de geïnclaverde fractuur kan zonder operatie met vroege mobilisatie worden behandeld, al moet bij ouderen met 30% secundaire instabiliteit rekening worden gehouden. De gedisloceerde fractuur dient operatief behandeld te worden d.m.v. osteosynthese of prothese. De non-union- en kopnecrosefrequentie verschilt eveneens duidelijk: 10% na geslaagde conservatieve behandeling van geïnclaverde fracturen, (28+7) 35% na succesvolle osteosynthese van gedisloceerde fracturen! Vanwege de betere reproduceerbaarheid is de meest bruikbare indeling die van niet gedisloceerd (corresponderend met Garden I/II) versus gedisloceerd fractuur (corresponderend met Garden III/IV). Figuur 10.

Figuur 9 AO classificatie collumfractuur

Figuur 10 Mediale collum: fractuurclassificatie

Niet gedisloceerd (L) Gedisloceerd (R)
1.4 Trochantere femurfractuur

Figuur 11 Evan’s classificatie trochantere femurfracturen

Type I: niet-gedisloceerde 2-fragment fractuur
Type II: gedisloceerde 2-fragment fractuur
Type III: 3-fragment fractuur zonder posterolaterale ondersteuning ten gevolge van dislocatie van het trochanter major fragment
Type IV: 3-fragment fractuur zonder mediale afsteuning ten gevolge van dislocatie van het trochanter minor
Type V: 4-fragment fractuur zonder posterolaterale en mediale afsteuning (combinatie van Type III en Type IV)
Type VI: Reversed type intertrochantere fractuur

Tegenwoordig is het meest gebruikte classificatiesysteem de The Classification of Fractures of the Long Bones zoals geïntroduceerd door de AO/ASIF groep. Deze classificatie is onderverdeeld in hiërarchische triades. Voor ieder botsegment (bijvoorbeeld femur, tibia of humerus) bestaan drie verschillende fractuurtypes (A, B, C), die elk weer onderverdeeld kunnen worden in drie fractuurgroepen (bijvoorbeeld voor de pertrochantere fracturen A1, A2, A3). De drie fractuurgroepen worden ieder onderverdeeld in drie subgroepen, al naar gelang de toenemende complexiteit (en instabiliteit) van de fractuur (zie Figuur 12). Hoe hoger het classificatienummer (van A1.1 naar A3.3) des te complexer de fractuur en de operatieve behandeling, en des te meer kans op complicaties. Ondanks het wijdverspreide gebruik van deze classificatie, werd aan de betrouwbaarheid en de reproduceerbaarheid voor een aantal specifieke fracturen getwijfeld. Literatuur onderzoek laat zien dat zowel
het AO-classificatiesysteem als andere methoden van fractuurclassificatie zeer wisselend scoren voor inter- en intra-observervariatie. Het AO-systeem vraagt om drie opeenvolgende beslissingsmomenten in de fractuurclassificatie. Elke van deze drie beslissingen voor fractuurttype, fractuurgroep en fractuursubgroep, voegt een foutrisico toe aan de voorafgaande classificatiestap. Het belangrijkste probleem in het classificeren van trochantere fracturen is gelegen in de diversiteit aan fractuurpatronen, de mogelijke betrokkenheid van het trochanter minor en major, en het onderscheid ten opzichte van de laterale collarumfracturen. Trochantere fracturen die uitebreiden tot in de subtrochantere regio zijn lastig te classificeren binnen de AO-classificatie, omdat hier niet wordt voorzien in de classificatie van intertrochantere fracturen. De complexiteit van zowel inter- als pertrochantere fracturen maken het lastig de betrouwbaarheid van een classificatie verder te verbeteren. De A3.1, A3.2 en A3.3 (intertrochantere) fracturen benadrukken echter de noodzaak tot het hebben van een betrouwbare subgroepclassificatie en het klinisch belang van een verder onderscheid in stabiele en instabiele (inter)trochantere fracturen. Het onderliggend traumamechanisme, maar ook de intrinsieke eigenschappen van ieder van deze A3 fracturen verschilt zoveel, dat deze fracturen zich moeilijk in één algemene A3 groep laten samenvatten. Ook de methode van repositie en mogelik de behandeling verschilt voor elk van deze fracturen. Hier zal in de paragraaf behandeling van de trochantere fractuur verder op ingegaan worden.

In een recent onderzoek van Schipper et al. is gebleken dat als gevolg van het cumulatieve foutrisico, de inter- en intra-observervariatie betrouwbaarheid sterk verbeterd als men uitsluitend op hoofdgroepenindeelt. De interobserver overeenkomst was matig voor pertrochantere subgroep classificatie (kappawaarde 0.33). Voor het classificeren van pertrochantere fractuurgroepen werd echter een goede interobserverovereenkomst gevonden (0.67). De intraobserver betrouwbaarheid voor fractuur groepen (31A1, A2 en A3) was nog beter met een kappawaarde van 0.72. Derhalve is het voor de hand liggend deze fractuurindeling aan te houden.

Figuur 12 De AO classificatie voor trochantere femurfracturen

A1: Eenvoudige 2-fragment trochantere fractuur
A1.1 Fractuur door de trochantere lijn
A1.2 Fractuur door het trochanter major
A1.3 Fractuur tot distaal van het trochanter minor
A2: Multifragmentaire trochantere fractuur met los trochanter minor fragment
A2.1 3-fragment
A2.2 4-fragment
A2.3 meer dan vier fragmenten
A3: Intertrochantere fractuur (eventueel met subtrochantere uitbreiding = onder het niveau van trochanter minor)
A3.1 Eenvoudig, schuin, één of fragmenten (‘reversed type’ fractuur)
A3.2 Eenvoudig, dwars
A3.3 Complex (dwars of schuin) met mediaal los fragment
Figuur 13 Trochantere fracturen: classificatie

A1: stabiele trochantere fractuur
A2: instabiele trochantere fractuur: los trochanter minor fragment
A3: intertrochantere fractuur
2 Patiëntprofiel

2.1 Inleiding

Er zijn geen literatuurgegevens waaruit afgeleid kan worden welke gegevens van een heupfractuurpatiënt "precies" verzameld moeten worden. Wel is bekend welke patiëntkenmerken voorspellend zijn voor overleven, herstel van functioneren en ontslagbestemming. Het belang van een goede voedingstoestand en het belang van het voorkomen van delier en decubitus zijn eveneens aangetoond.

2.2 Prognostische factoren

De mortaliteit van de heupfractuur neemt toe met stijgende leeftijd en mannen overlijden vaker dan vrouwen. Meerdere nevendiagnosen en verminderde cognitie verhogen de kans op overlijden, evenals een verminderd functioneren, slechtere mobiliteit en het tevoren geïnstitutionaliseerd wonen.

Hoge leeftijd, meerdere nevendiagnosen, verminderd cognitief functioneren, en tevoren verminderd functioneren zijn eveneens voorspellende factoren voor het functioneel herstel.

Oudere patiënten met een heupfractuur zijn vaak ondervoed bij ziekenhuisopname. Orale bijvoeding met multi-nutriënten vermindert complicaties, maar heeft geen effect op de mortaliteit. Sondevoeding kan bij sterk ondervoede patiënten de opnameduur in het ziekenhuis bekorten. Decubitus postoperatief (soms al ontstaan op de SEH) komt vaak voor (30-50%) en verplegen op een anti-decubitus matras kan het ontstaan voorkomen en de genezing bevorderen. Het pro-actief consulteren van een klinisch geriater vermindert het voorkomen van delier op afdelingen waar heupfractuurpatiënten worden verpleegd (van 50% naar 30%).

Het doel van het afnemen van een algemene anamnese en lichamelijk onderzoek (dat wil zeggen niet specifiek gericht op de fractuur) is om een indruk te verkrijgen van de situatie vóór de fractuur en ten tijde van de ziekenhuisopname van:

- lichamelijke conditie;
- nevendiagnosen en medicatiegebruik;
- mobiliteit;
- afhankelijkheid in ADL (algemene dagelijkse levensverrichtingen) en BDL (bijzondere dagelijkse levensverrichtingen zoals huishouden, koken etc.);
- psychisch functioneren inclusief ook communicatiemogelijkheden;
- maatschappelijk functioneren waaronder mantelzorg, aanwezigheid van partner, soort woon/zorg omgeving en institutionalisering (verzorgingshuis/verpleeghuis).

Bijkomende diagnosen kunnen eenvoudig ingedeeld worden in actieve (= gepaard gaand met klachten, of symptomen, of functionele beperkingen of op dit moment onder behandeling) en niet-actieve (bijvoorbeeld status na eerdere operatie, medische voorgeschiedenis). Een alternatieve, meer gedetailleerde indeling is die volgens de Severity of Illness Rating Scale (SIRS) die per orgaansysteem een indeling, lijkend op de ASA, maakt van 0-4 punten (Tabel 1).

Er zijn verschillende meetinstrumenten om de functionele status vast te stellen waarvan de mobiliteitsscore volgens Parker et Palmer (1993) het meest geschikt is om op de SEH ten tijde van de opname reeds te inventariseren. De Barthel Index is de meest bekende en internationaal gebruikte score.

Moeilijker is het om vast te stellen hoe het cognitief functioneren was vóór de fractuur. (Hetero)anamnestisch moet het wel mogelijk zijn om een eenvoudige onderverdeling te maken: in de volgende categorieën: geen cognitieve beperkingen; lichte geheugenstoornissen zonder invloed op dagelijkse activiteiten; matige geheugenstoornissen, en dementieel syndroom reeds tevoren gediagnosticeerd.

Na opname in het ziekenhuis kunnen screeningsinstrumenten voor het cognitief functioneren gebruikt worden zoals de cognitieve screeningstest (CST) of de meer internationaal geaccepteerde Mini Mental State Examination (MMSE). Tevens dient er te worden vastgesteld of er sprake is van een delier en eventueel het advies van een klinisch geriater in te winnen.
Tabel 1 Severity of Illness Rating Scale (SIRS) per orgaansysteem

<table>
<thead>
<tr>
<th>Score</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Volledig gezond; geen klachten of lichamelijke afwijkingen, geen functionele beperking.</td>
</tr>
<tr>
<td>1</td>
<td>Goede gezondheid; alleen lichamelijke afwijkingen zonder klachten; geen functionele beperkingen</td>
</tr>
<tr>
<td>2</td>
<td>Ziekte zonder functionele beperkingen</td>
</tr>
<tr>
<td>2a</td>
<td>Patiënt heeft klachten zonder daarmee samenhangende lichamelijke afwijkingen die zijn/haar dagelijkse activiteiten verstoren; zonder functionele beperkingen.</td>
</tr>
<tr>
<td>2b</td>
<td>Patiënt heeft klachten gepaard gaand met lichamelijke afwijkingen die zijn/haar dagelijkse activiteiten verstoren; zonder functionele beperkingen</td>
</tr>
<tr>
<td>3</td>
<td>Matige functionele beperking: Er zijn klachten en daarmee samenhangende lichamelijke afwijkingen; er zijn tekenen van enige functionele beperkingen die de uitvoering van BDL (bijzondere dagelijkse levensverrichtingen) verstoren.</td>
</tr>
<tr>
<td>4</td>
<td>Ernstige functionele beperking: Er zijn klachten en daarmee samenhangende lichamelijke afwijkingen; er is begeleiding of hulp nodig bij het uitvoeren van 1 of meer ADL taken door functionele beperkingen.</td>
</tr>
</tbody>
</table>

2.3 Pre-operatief delay

Parker adviseert om interne fixatie te verrichten uiterlijk binnen 48 uur na het ongeval. In zijn serie van 765 patiënten ouder dan 60 jaar had een langer tijdsbestek tot operatie geen invloed op mortaliteit, maar wel op morbiditeit, met name ontwikkeling van decubitus. Orosz beschreef bij 1178 patiënten met een heupfractuur een hogere kans op complicaties en verlengde opnameduur bij een operatie-delay van meer dan 24 uur. Er werd een trend gezien, maar significant verband tussen vertraging meer dan 24 uur en mortaliteit. In een recente studie wordt aangetoond dat met name met betrekking tot pijnbestrijding en snelheid van mobilisatie en revalidatie een uitstel langer dan 24 uur slechtere resultaten geeft. Met betrekking tot mortaliteit, morbiditeit en uiteindelijk resultaat werden ook in deze studie geen verschillen gezien. Deze bevindingen worden zowel bij osteosynthese als bij endoprothetische vervanging geconstateerd.

Samenvattend kan gesteld worden dat bij patiënten ouder dan 65 jaar een tijdsbestek tot operatie moet worden aangehouden van bij voorkeur binnen 24 uur na opname, conform de prestatieindicator in de meeste ziekenhuizen, tot maximaal 48 uur.
3 Therapie geïnclaveerde mediale collumfractuur

3.1 Inleiding
Na de eerste beschrijving van de geïnclaveerde mediale collumfractuur (GMC) door Colles (1818) bleef het lang stil rond deze fractuur totdat Santos (1930) aan een kadaverpreparaat liet zien wat inclavatie, idealiter, betekent (Figuur 14). Pauwels (1935) verschafte vervolgens de biomechanische verklaring voor het feit dat, ook indien de inclavatie niet ideaal is, spontane fractuurgenezing kan optreden, omdat de “nieuwe” fractuurlijn een meer horizontaal verloop heeft.

Figuur 14 Mechanica van de geïnclaveerde mediale collumfractuur

![Mechanica](image)

R= inwerkende kracht bij belasting
S= schuifkrachten
P= compressiekrachten

Toch treedt bij een aantal patiënten na enkele dagen of weken alsnog secundaire instabiliteit (SI) van de fractuur op en moet operatieve behandeling volgen. Alle denkbare oorzaken voor deze SI zijn in de afgelopen 40 jaar beschreven: retroversie van meer dan 20°, valgus meer dan 20°, een Pauwels-hoek van meer dan 45°, onderbreking van de voorste cortex, vroeg belasten, slechte algemene of geestelijke conditie en leeftijd boven de 68 jaar. De meeste auteurs echter menen dat SI een onvoorspelbaar gebeuren is. Dat is de reden dat veel chirurgen en orthopeden de GMC routinematig, min of meer profylactisch, intern fixeren. Zij worden daarin gesteund door recentere publicaties. Natuurlijk komen deze auteurs met goede consolidatieresultaten (respectievelijk 10, 13, 2 en 6% non-union). Een fractuur, die in de meerderheid van de gevallen spontaan geneest, moet dat met behulp van een osteosynthese zeker doen!

3.2 Conservatief
De controverse over de voorkeursbehandeling van de GMC bestaat al vele decennia. Waldenström bepleitte de behandeling in zweefrekverband gedurende 6-8 weken, een methode, die in Nederland tot voor kort nog aanhangers had. Deze behandelwijze leidt, evenals bedrust gedurende 4-6 weken, met name bij ouderen tot trombo-embolische complicaties, decubitus, urineweginfecties en mentale achteruitgang.

Voorts lijkt het niet logisch om tractie uit te oefenen op een geïnclaveerde fractuur; men moet juist de inclavatie koesteren. Tenslotte zijn er economische en psychologische bezwaren tegen een langdurige opname. Om deze redenen moeten langdurige bedrust en zweef(rek)verband als obsoleet worden beschouwd.
Voor de volledigheid dient vermeld te worden dat ook over de conservatieve behandeling in gipsverband is gepubliceerd. Stöhr (uit de kliniek van Böhler), Christopher en Mourgues behandelde de GMC met een bekkenbeengips met korte pijp. Het merendeel van de patiënten was echter jonger dan 70 jaar. Wij zullen later zien dat de GMC bij deze patiëntengroep ook met een puur functionele behandeling in een zeer hoog percentage geneest.

De eerste auteur, die berichtte over de resultaten van de functionele behandeling van de GMC was Crawford. Hij mobiliseerde zijn patiënten gemiddeld 2 weken na het ongeval en hield ze circa 4 maanden onbelast! Dat dit lukte, houdt vermoedelijk verband met de vitaliteit van zijn patiënten. Slechts 10% was 80 jaar of ouder. Crawford registreerde slechts 8% SI. De gegevens van Crawford en de overige auteurs, die verslag doen van de functionele behandeling (lees: vroege mobilisatie), zijn verzameld in Tabel 2. Er is een tendens naar hogere percentages SI naarmate patiënten vroeger op de been gezet worden en met name belast gaan lopen. Tanaka vond een significant verschil (p = < 0.01) ten nadele van de patiënten, die minder dan 14 dagen bedrust kregen. Otremski beschrijft een relatief jonge patiëntengroep (gemiddeld 65 jaar), maar stelt vast dat de patiënten met SI gemiddeld 73 jaar oud zijn en dat leeftijd kennelijk een belangrijke prognostische factor is. Patiënten jonger dan 68 genazen allen!

Tabel 2 Resultaten van de niet-operatieve (functionele) behandeling van de GMC

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Jaar</th>
<th>Gem. leeftijd</th>
<th>Aantal patiënten</th>
<th>Bedrust gemiddeld (dagen)</th>
<th>Volbelast gemiddeld (weken)</th>
<th>Secundaire instabiliteit</th>
<th>Min. FU (maanden)</th>
<th>Avasculaire necrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crawford</td>
<td>1960</td>
<td>37</td>
<td>50</td>
<td>14</td>
<td>17</td>
<td>8%</td>
<td>5</td>
<td>6%</td>
</tr>
<tr>
<td>Hilleboe</td>
<td>1970</td>
<td>70</td>
<td>37</td>
<td>1</td>
<td>15</td>
<td>11%</td>
<td>4</td>
<td>8%</td>
</tr>
<tr>
<td>AsserHan</td>
<td>1978</td>
<td>75</td>
<td>42</td>
<td>enkele</td>
<td>> 6</td>
<td>19%</td>
<td>9</td>
<td>14%</td>
</tr>
<tr>
<td>Famos</td>
<td>1982</td>
<td>75</td>
<td>73</td>
<td>enkele</td>
<td>0.5</td>
<td>32%</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Yde</td>
<td>1983</td>
<td>80</td>
<td>68</td>
<td>1</td>
<td>0.5</td>
<td>58%</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Jensen</td>
<td>1983</td>
<td>73</td>
<td>128</td>
<td>enkele</td>
<td>> 2</td>
<td>27%</td>
<td>12</td>
<td>7%</td>
</tr>
<tr>
<td>Riedl</td>
<td>1989</td>
<td>73</td>
<td>123</td>
<td>10</td>
<td>?</td>
<td>9%</td>
<td>10</td>
<td>8%</td>
</tr>
<tr>
<td>Otremski</td>
<td>1990</td>
<td>65</td>
<td>123</td>
<td>Enkele</td>
<td>76% < 1</td>
<td>9%</td>
<td>10</td>
<td>8%</td>
</tr>
<tr>
<td>Raaymakers</td>
<td>1991</td>
<td>70</td>
<td>132</td>
<td>85% < 7</td>
<td>46% < 2</td>
<td>9%</td>
<td>36</td>
<td>12%</td>
</tr>
<tr>
<td>Cserháti</td>
<td>1996</td>
<td>75</td>
<td>122</td>
<td>10</td>
<td>10</td>
<td>20%</td>
<td>24</td>
<td>13%</td>
</tr>
<tr>
<td>Raaymakers</td>
<td>2002</td>
<td>72</td>
<td>311</td>
<td>93% < 7</td>
<td>?</td>
<td>31%</td>
<td>24</td>
<td>11%</td>
</tr>
<tr>
<td>Tanaka</td>
<td>2002</td>
<td>80</td>
<td>19</td>
<td>< 14</td>
<td>?</td>
<td>63%</td>
<td>6</td>
<td>5%</td>
</tr>
<tr>
<td>Verheyen</td>
<td>2005</td>
<td>81</td>
<td>105</td>
<td>< 7</td>
<td>8 (?)</td>
<td>46%</td>
<td>> 14</td>
<td>?</td>
</tr>
</tbody>
</table>

3.3 Operatief

Een groter aantal auteurs pleit voor primair operatieve behandeling van de GMC. Hun resultaten zijn verzameld in Tabel 3. Wat betreft het implantaat wordt een langzame verschuiving gezien van de Smith-Petersen pen, via de multiple pinning naar de schroefosteosynthese.

Sinds de introductie van gecanuleerde spongiosaschroeven wordt steeds vaker gebruik gemaakt van de percutane techniek. Het betreft, chirurgisch gezien, natuurlijk een relatief kleine ingreep. Ten onrechte gaan de meeste auteurs echter voorbij aan het feit dat het ook hier om een emotioneel en fysiek belastende operatie (onder meer een vorm van anesthesie en opspannen op de tractietafel) gaat voor de meestal (hoog)begaarde patiënt.

Wat opvalt, is dat ook een “prophylactische” osteosynthese een GMC niet volledig behoeft voor SI. Deze complicatie doet zich toch in 0-13% voor. De grootste serie primair geopereerde fracturen telde 6.4% secundaire instabiliteit.

Avasculaire necrose wordt, na functionele en chirurgische behandeling van de GMC, in zeer uiteenlopende percentages (4-36%) gerapporteerd. Dat komt door wisselende follow-up periodes, wisselende percentages nagecontroleerde patiënten en verschillende interpretatie van de röntgenfoto. Een follow-up periode van 2 jaar moet als minimum worden beschouwd. Binnen die periode openbaart zich 70% van de kopnecroses. Elke verandering van de contour van de femurkop dient als een (doorgemaakte) kopnecrose te worden beschouwd. Gerandomiseerde trials, waarin de resultaten van de operatieve en niet-operatieve (functionele) behandeling van de GMC tegen elkaar worden uitgezet, zijn niet gepubliceerd. Cserháti vergeleek retrospectief twee parallelle series patiënten, waarvan geslacht, gemiddelde leeftijd en co-morbiditeit en fractuurtype niet significant verschillen (Tabel 2 en tabel 3). De functionele groep kreeg 7-10 dagen bedrust in zweefverband, dan volgden
zitten in de stoel en onbelaste mobilisatie. De opnameduur was gemiddeld 23 dagen, het SI-percentage 20% in de eerste 6 weken. In het eerste deel van de onderzoeksperiode werden patiënten pas na gemiddeld 19 dagen gemobiliseerd en bedroeg het SI-percentage 16%. Later ging men over op mobiliseren na gemiddeld 13 dagen en liep de SI op tot 30%. Twee tot zeven jaar na de fractuur werd in de functionele groep 13% avasculaire necrose vastgesteld.

In de primair operatieve groep werd de fractuur gestabiliseerd met 3 AO-schroeven, al of niet ingebracht door een plaat. Hier was het percentage necrose (niet-significant) hoger; (16%), de opnameduur vanzelfsprekend korter (17 dagen) en er was geen SI. Kennelijk is de primair operatieve behandeling niet in staat om de opnameduur te verminderen (de bedrustperiode in de functionele groep is met 7-10 dagen vermoedelijk onnodig lang). Ook de frequentie van avasculaire necrose is niet lager bij patiënten met een primaire osteosynthese.

Tabel 3 Resultaten van de primaire osteosynthese van de GMC

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Jaartal</th>
<th>Aantal patiënten</th>
<th>Postop. bedrust (dagen)</th>
<th>Implantaat</th>
<th>Volbelast gemiddeld (weken)</th>
<th>Secundaire instabiliteit</th>
<th>Min. FU (maanden)</th>
<th>Avasculaire necrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fielding 1962</td>
<td>32</td>
<td>28</td>
<td>SP/Pugh</td>
<td>8-12</td>
<td>0</td>
<td>6</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Bentley 1968</td>
<td>20</td>
<td>2</td>
<td>SP-pen</td>
<td>3.5</td>
<td>5%</td>
<td>36</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Sybrandy 1976</td>
<td>20</td>
<td>1</td>
<td>Schroeven</td>
<td>13-52!!</td>
<td>0</td>
<td>24</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Schwarz 1981</td>
<td>31</td>
<td>1</td>
<td>Schroeven</td>
<td>?</td>
<td>36</td>
<td>0</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Maroske 1983</td>
<td>23</td>
<td>1</td>
<td>Enderpennen</td>
<td>0</td>
<td>4%</td>
<td>36</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Svenningsen 1984</td>
<td>30</td>
<td>1</td>
<td>GHS</td>
<td>0</td>
<td>36</td>
<td>36</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Swiontkowski 1986</td>
<td>23</td>
<td>Enkele</td>
<td>Multip.pins</td>
<td>6</td>
<td>4%</td>
<td>2</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Philips 1988</td>
<td>93</td>
<td>1</td>
<td>Wat-Jon-pen</td>
<td>0</td>
<td>7%</td>
<td>24</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Raaymakers 1998</td>
<td>3</td>
<td>2</td>
<td>SP-pen</td>
<td>4-30</td>
<td>0</td>
<td>24</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Nilsson 1988</td>
<td>129</td>
<td>1</td>
<td>SP-pen</td>
<td>130⁰ plaat</td>
<td>6%</td>
<td>60</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Kuokkanen 1991</td>
<td>15</td>
<td>1</td>
<td>Schroeven</td>
<td>0</td>
<td>7%</td>
<td>?</td>
<td>?%</td>
<td></td>
</tr>
<tr>
<td>Parker 1992</td>
<td>131</td>
<td>1</td>
<td>GHS</td>
<td>0</td>
<td>0%</td>
<td>?</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Jarolem 1993</td>
<td>45</td>
<td>Enkele</td>
<td>Schroeo/Know</td>
<td><1</td>
<td>5%</td>
<td>0.3</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Strömqvist 1993</td>
<td>175</td>
<td>1</td>
<td>Hanssonpnes</td>
<td>0</td>
<td>3%</td>
<td>24</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Rzesacz 1995</td>
<td>75</td>
<td>2-3</td>
<td>Schroeven</td>
<td>6-12</td>
<td>2%</td>
<td>8</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Bonnaire 1995</td>
<td>143</td>
<td>1</td>
<td>Diverse</td>
<td>?</td>
<td>36</td>
<td>18%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Chiu 1996</td>
<td>49</td>
<td>1</td>
<td>Knowles pin</td>
<td>8</td>
<td>3%</td>
<td>35</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Cserháti 1996</td>
<td>125</td>
<td>1-18</td>
<td>Schroeven</td>
<td>0-3</td>
<td>0</td>
<td>24</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Conn/Parker 2004</td>
<td>375</td>
<td>1</td>
<td>Schroeven/GHS</td>
<td>?</td>
<td>6,4%</td>
<td>24</td>
<td>4%</td>
<td></td>
</tr>
</tbody>
</table>

In de eerste 6 weken overleden 8 patiënten. Hun fracturen waren nog wel stabiel maar zij werden buiten de evaluatie gelaten, omdat nog geen fractuurgenezing kon zijn bereikt. De overige 311 fracturen werden gevolgd tot genezing of SI. Bij 31% trad SI op, waarbij al direct opviel dat het merendeel van de SI optrad bij patiënten boven de 70 jaar: 41%. De jongere patiënten overkwam dit in slechts 13% van de gevallen. In een logistieke regressieanalyse werd de invloed op het optreden van SI onderzocht van de hiervoor genoemde risicofactoren: leeftijd, co-morbiditeit (uitgedrukt in het aantal serieuze nevendiagnosen), de zijdelingse en voor/achterwaartse Garden index (Figuur 15), de Pauwels classificatie (Figuur 7), de onderbreking van de voorste cortex op de
zijdelingse foto en belast lopen. Wat dit laatste betreft, werd zowel de invloed onderzocht van nog gelopen hebben tot aan de ziekenhuisopname als ook het moment, waarop de patiënt na de opname weer belast ging lopen. Onderscheiden werd tussen “vroeg” (< 4 weken) en “laat” (> 4 weken) belasten.

Als zeer sterke risicofactoren voor secundaire instabiliteit kwamen belangrijke co-morbiditeit (maligniteit, ernstige COPD, decompensatio cordis, status na CVA, parkinsonisme, dementie) en in iets mindere mate leeftijd boven de 70 jaar naar voren. De p-waarden waren respectievelijk < 0.0001 en 0.0002.

De overige variabelen bleken geen significante risicofactor te zijn, al lijken een steil verlopende fractuurlijn (Pauwels 3) en retroversie > 20° wel een zekere betekenis te hebben.
Figuur 15 Garden index zijdelings (links) en voor/achterwaarts (rechts)

Figuur 16 Onderbreking in de voorste cortex van de dijbeenhalss

Tabel 4 Invloed van risicofactoren op het ontstaan van secundaire instabiliteit na een geïnclaverde mediale collumfractuur

<table>
<thead>
<tr>
<th>Factoren</th>
<th>P-waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leeftijd >70 jaar</td>
<td>P = 0.0002</td>
</tr>
<tr>
<td>Co-morbiditeit</td>
<td>P < 0.0001</td>
</tr>
<tr>
<td>Retroversie > 20°</td>
<td>P = 0.009</td>
</tr>
<tr>
<td>Pauwels type 3 fractuur</td>
<td>P = 0.012</td>
</tr>
<tr>
<td>Valgus > 20°</td>
<td>P = 0.72</td>
</tr>
<tr>
<td>Gelopen vóór opname</td>
<td>P = 0.26</td>
</tr>
<tr>
<td>Vroeg belasten (< 4 weken)</td>
<td>P = 0.43</td>
</tr>
<tr>
<td>Onderbroken voorste cortex (axiale foto)</td>
<td>P = 0.93</td>
</tr>
</tbody>
</table>
De kans op SI bij een gezonde patiënt met een GMC onder de 70 jaar is 5%. Bij oudere patiënten met meerdere nevendiagnoses loopt de SI-kans op tot 83%! Voor deze laatste groep patiënten is daarom een primair operatieve behandeling te overwegen. In termen van morbiditeit en mortaliteit heeft SI en de daaropvolgende operatie voor deze groep patiënten vermoedelijk geen nadeel opgeleverd. Bij 7 patiënten met SI werd osteosynthese verricht. Alle fracturen genazen, er ontwikkelde zich kopnecrose bij twee 68-jarige vrouwen (29%). Dit percentage is weliswaar wat hoger dan die, welke in tabel 2 vermeld staan. De getallen zijn echter klein en laten geen conclusies toe. Voor de beweringen van Bentley, Famos, Jeanneret en Cserháti dat osteosynthese van een instabiel geworden GMC de kans op kopnecrose zou verhogen, zijn in de literatuur geen bewijzen te vinden. Integendeel, Calandruccio wees erop dat bij een GMC sprake is van letsel aan de intraossale bloedvaten op het niveau van de fractuur, terwijl bij de gedisloceerde collumfractuur ook schade aan de vaten in het retinaculum is aangebracht. SI noemt hij een “process of slow gliding, which may not cause additional damage to the retinacular vessels”.

De gemiddelde mortaliteit in het eerste jaar na de fractuur is 18,5% en dus iets lager dan Conn en Parker in hun zeer grote serie vonden: 20,5%. Natuurlijk is de sterftekans onder de SI-patiënten groter dan die onder de patiënten met een genezen fractuur. Zij zijn, zoals wij zagen, in een slechtere algemene toestand en hebben een kortere levensverwachting. Een negatief effect van de opgetreden instabiliteit en de daarop volgende operatie lijkt niet aanwezig. In dat geval zou het verschil in mortaliteit vooral in de eerste maanden na het ongeval zichtbaar moeten worden. Er is daarentegen een geleidelijk toenemend verschil in overleving te zien. Tenslotte, de 2-jaars mortaliteit van de AMC patiënten bedroeg 27%. In een vergelijkbare groep Zweedse patiënten met een GMC, die primair operatief werd behandeld, was die sterftekans bijna evenals in de voornoemde Engelse serie iets hoger: 30%. Kopnecrose is bij 18 (11%) van de 160 genezen fracturen, die tenminste 2 jaar gevolgd konden worden, vastgesteld. Dit percentage is lager dan in vele publicaties over primair geopereerde GMC’s (5) wordt bericht.

Tabel 5 Linkerkolom: patiënten met genezen fracturen. Rechterkolom: patiënten met SI

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>percentage survival</td>
</tr>
<tr>
<td>months</td>
</tr>
<tr>
<td>percentage survival in percent</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

De resultaten van de AMC studie suggereren dat door het consequent functioneel behandelen van alle GMC’s, bij jong en oud, alleen tijd verloren wordt. Tegenover 31% van de fracturen, die SI ondervonden en alsnoer gepereerd moet worden, staat het feit dat 69% van de patiënten een operatie bespaard wordt. Wat de discussie over de beste behandeling van de GMC lastig en onzuiver maakt, is het feit dat de medicus zich onvoldoenend realiseert dat een operatie voor een patiënt een ingrijpend gebeuren is, dat met pijn, emotionele stress en een (gering) operatie/anesthesiersrisico gepaard gaat. Deze bezwaren tegen routinematig en in feite prophylactisch opereren vindt men niet terug in de publicaties van de voorstanders ervan.
4 Therapie gedisloceerde mediale collumfractuur

4.1 Inleiding
Zowel interne fixatie, kop-halsprothese of totale heup prothese (THP) kunnen als behandeling worden overwogen. Interne fixatie heeft een verhoogd risico op revisie van de heup, maar minder risico op morbiditeit. Indien patiënten adequaat worden voorgelicht over deze te verwachten uitkomsten is IF verdedigbaar. Hoewel het falen van de IF niet de gewenste uitkomst is, kunnen patiënten bereid zijn een revisiepercentage voor AVN en voor non-union te accepteren. Falen van IF kan effectief behandeld worden met revisie naar endoprothese. In een retrospectieve case-control studie van IF gerevieerd naar THP versus primaire THP bleek een trend te zijn naar verhoogde incidentie van vroege complicaties en slechtere heupfunctie in de IF revisie groep.
Individuele risicofactoren met betrekking tot fractuurgenezing, morbiditeit en mortaliteit moeten geëvalueerd worden en met de patiënt of de familie besproken worden. Op basis hiervan kan een beslissing worden genomen m.b.t. het al dan niet sparen van de eigen heup versus een endoprothetische vervanging.

4.2 Keuze van behandeling

4.2.1 Voor- en nadelen van IF tegenover arthroplastiek
In 1994 werd de eerste meta-analyse (1975-1991) over de behandelingsresultaten van gedisloceerde mediale collum fracturen met Interne Fixatie (IF) of arthroplastiek bij bejaarde patiënten gepubliceerd. Van de 106 geselecteerde studies baseerde de meta-analyse zich voornamelijk op de resultaten van 5 studies met een controlegroep, waarvan 2 gerandomiseerd waren.

<table>
<thead>
<tr>
<th>Tabel 6 Voor- en nadelen van IF en arthroplastiek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omschrijving</td>
</tr>
<tr>
<td>Voordelen</td>
</tr>
<tr>
<td>Algemeen</td>
</tr>
<tr>
<td>Operatietrauma</td>
</tr>
<tr>
<td>Vroege mortaliteit</td>
</tr>
<tr>
<td>Morbiditeit:</td>
</tr>
<tr>
<td>Infectie</td>
</tr>
<tr>
<td>Luxatie</td>
</tr>
<tr>
<td>Loslaten</td>
</tr>
<tr>
<td>Protrusie</td>
</tr>
<tr>
<td>Revisie</td>
</tr>
</tbody>
</table>

De percentages en relatieve risico’s (RR) zijn gebaseerd op de meta-analyse van Masson/Bhandari.

4.2.2 Individuele factoren
Veelgenoemde pre-operatieve individuele factoren zijn: mobiliteit, woonsituatie, co-morbiditeit (ASA klasse), mentale status en botdichtheid. De prospectieve multicentre Physiologic Status Score (P.S.S.) studie onder 224 patiënten in Nederland kwantificeerde deze factoren tot een vitaliteitscore. Bij patiënten van 65 tot 79 jaar met een hoge vitaliteitscore en een optimaal uitgevoerde IF werd bij 25% een revisie naar arthroplastiek verricht. Deze revisie kan acceptabel zijn, omdat de functionele uitkomst (Harris Hip Score) na 2 jaar bij primair succesvolle en bij gerevieerde IF patiënten vergelijkbaar was. Bij patiënten boven de 80 jaar stijgt de revisie kans voor IF naar 47%, ook bij deze groep vitale bejaarden met een hoge vitaliteitscore. IF is derhalve boven de 80 jaar niet meer te adviseren. Bij patiënten boven de 65 jaar en lagere vitaliteitscore kan een arthroplastiek worden ingebracht met een kans van 3% op een operatieve re-interventie.
Botdichtheid, pre-operatief met de gouden standaard DEXA methode gemeten, bleek als onafhankelijke factor niet van invloed te zijn op het falen van IF bij patiënten met een hoge vitaliteitscore in de PSS studie.

Chronische sepsisbronnen zoals ulcera van de benen of langdurige blaascatheter zijn geen absolute contra-indicaties voor heupprothesen. Interne fixatie kan hierbij de voorkeur hebben.

Gevorderde artrose van het ipsilaterale heupgewricht, pathologische fractuur en reumatoïde artritis zijn geaccepteerde contra-indicaties voor IF.

Mentale status was geen exclusie criterium in 5 gerandomiseerde studies, maar deze studies geven geen uitsluitend over de beste behandelingskeuze bij demente patiënten. Van Dortmont randomiseerde 60 demente patiënten voor IF of kop-halsprothese. Een significant verschil in peri-operatieve morbiditeit ten nadele van de kop-halsprothese werd gevonden en op basis hiervan werd de voorkeur gegeven aan IF bij dementen en werd IF gezien als een goede palliatieve behandelingsmethode (pijnbestrijding, verpleegbaarheid). Bij binaire logistieke regressie analyse in de PSS studie was mentale status niet geassocieerd met functionele uitkomst. Parker noemde mentale status geen factor van invloed op de keuze van behandeling.

4.2.3 Mortaliteit, revisie, functie en pijnklachten na IF en arthroplastiek

Twaalf gerandomiseerde studies over de behandeling van de gedisloceerde mediale collum fractuur werden in drie meta-analyses opgenomen.

Tabel 9 geeft een overzicht van de resultaten van de 9 studies met minimaal 20 patiënten per groep. Er is mogelijk een verhoogde vroege mortaliteit (3-6 maanden postoperatief) na arthroplastiek, maar dit verschil is niet significant. Het revisiepercentage is voor IF consequent en significant hoger dan voor de arthroplastiek. De resultaten van pijnbeleving en goede functie waren voor beide behandelingsmodaliteiten vergelijkbaar.

4.2.4 Morbiditeit na IF en arthroplastiek

Het risico op een diep infect, reikend tot het implantaat, ligt bij arthroplastiek significant hoger dan bij interne fixatie (RR = 1.8). Het risico op bloedverlies en postoperatieve bloedtransfusiebehoefte is significant ten voordele van interne fixatie (RR = 0,1 voor transfusiebehoefte). Voor pneumonie, decubitus, diepe veneuze trombose en longembolie kon geen significant verschil worden aangetoond tussen beide therapievormen.

4.2.5 Complicaties na arthroplastiek

Meta-analyse resultaten van 10 gerandomiseerde studies laten een luxatiepercentage zien van 3.7% voor kop-halsprothese en 15.8% voor totale heup prothese.

Loslating van de prothesesteel werd bij 4.6% van 327 patiënten en protrusie in het acetabulum bij 3.1% van 290 patiënten gevonden.

4.2.6 Techniek interne fixatie

Repositie: op de tractietafel ligt de patiënt in rugligging, zodanig dat doorlichting in AP en laterale richting van het heupgewricht mogelijk is. Het concept van reposiitie in valgus van de kop in AP richting tot een Garden index van 160 tot 180 graden is al meer dan 30 jaar bekend. Vóór fixatie is adequate reposiitie een vereiste, omdat inadequate reposiitie een risicofactor is voor avasculaire necrose van de femurkop en instabiele fixatie.

Tijdens reposiitie kunnen plotselinge krachtige bewegingen of overmatige diastase de bloedtoevoer naar de femurkop verder compromitteren. Voor gesloten reposiitie van de meest voorkomende situatie van dislocatie van de femurkop in varus en retroversion kan de fractuur worden gereponeerd door met beide handen het bovenbeen intern te roteren in lichte abductie en onder lichte longitudinale tractie. Vervolgens wordt de voet in de schoen gefixeerd. Soms is tot 90 graden endorotatie van de voet nodig voor adequate reposiitie. (Bosch, Swiontkowski)

Volgens Garden is in het geval van inadequate criteria voor goede reposiitie meerdere malen reponeren wederom slecht voor bloedvoorziening van de kop. De reposiitie volgens Leadbetter (tractie, flexie, abductie en endorotatie) wordt ook toegepast, maar door de grotere krachten, die hierbij worden uitgeoefend, leidt dit theoretisch tot vermindering van de bloedtoevoer naar de femurkop.

Na adequate reposiitie moet de Garden Index op de peri-operatieve AP doorlichting opname tussen de 160-180° zijn, waarbij 180° overeenkomt met 20° valgus (Garden 1971). Elke graad van varus reposiitie van de femurkop in AP richting is onacceptabel.
Tabel 7 Overzicht van de resultaten van gerandomiseerde studies IF versus EP

<table>
<thead>
<tr>
<th>Study</th>
<th>Mortaliteit</th>
<th>IF</th>
<th>KHP</th>
<th>THP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sikorski 1981</td>
<td>NS</td>
<td>32%</td>
<td>8%</td>
<td>-</td>
</tr>
<tr>
<td>n=218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>70 jaar</td>
<td>24-33%</td>
<td>27%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skinner 1989</td>
<td>Mortaliteit</td>
<td>25%</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>n=278</td>
<td>Revisie</td>
<td>25%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>>65 jaar</td>
<td>Goede functie</td>
<td>57%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>1 jaar follow-up</td>
<td>Pijnklachten</td>
<td>12%</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>Van Vugt 1993</td>
<td>Mortaliteit</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>n=43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80 jaar</td>
<td>Goede functie</td>
<td>100%</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>3 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Dortmont 2000</td>
<td>Mortaliteit</td>
<td>65%</td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td>n=60</td>
<td>Revisie</td>
<td>13%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Dement, >70 jaar</td>
<td>Goede functie</td>
<td>36%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>1 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johanssen 2000</td>
<td>Mortaliteit</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>n=100</td>
<td>Revisie</td>
<td>40%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>>75 jaar</td>
<td>Goede functie</td>
<td>20%</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>2 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davison 2001</td>
<td>Mortaliteit</td>
<td>20%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>n=280</td>
<td>Revisie</td>
<td>30%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>65-79 jaar</td>
<td>Goede functie</td>
<td>70%</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>5 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parker 2002</td>
<td>Mortaliteit</td>
<td>25%</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>n=455</td>
<td>Revisie</td>
<td>39%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>>70 jaar</td>
<td>Goede functie</td>
<td>37%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>1 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogmark 2002</td>
<td>Mortaliteit</td>
<td>21%</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>n=409</td>
<td>Revisie</td>
<td>40%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>>70 jaar</td>
<td>Goede functie</td>
<td>64%</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>2 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roden 2003</td>
<td>Mortaliteit</td>
<td>53%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>n=100</td>
<td>Revisie</td>
<td>40%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>>70 jaar</td>
<td>Goede functie</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>5 jaar follow-up</td>
<td>Pijnklachten</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In latere richting moet de as door de femurkop in lijn zijn met de as door de diafyse van het femur, dus beide assen moeten in lijn worden gebracht tot zo dicht mogelijk bij de 180°, waarbij maximaal 10° retroversie nog acceptabel is.

In craniocaudale richting moet verkorting zijn opgeheven. Met name bij een Pauwe 3 type fractuur met steil verlopend fractuurvlak kan de Garden hoek (AP opname) en de retroversie (axiale opname) optimaal zijn, zonder dat adequate repositie is verkregen, en waarbij de kop nog inacceptabel naar caudaal is verplaatst. Dit kan ingeschat worden aan de continuïteit van het mediale complex in het calcar femoris en de overgang hiervan naar de femurkop. Er zijn echter geen goede cohortstudies, die de craniocaudale positie van het kopfragment geanalyseerd hebben m.b.t. het uiteindelijk resultaat van een osteosynthese.

Bij falen van gesloten repositie is open repositie zelden nodig. Arthrotoomi om fractuur repositie te bevestigen of om een hematoom te onttalen wordt niet meer aangeraden. Bij patiënten boven de 65 jaar kan beter bij inadequatte repositie worden overgegaan tot een vorm van arthroplastiek.

Biomechanisch concept: het intern spalken van de fractuur is de functie van een goed ingebracht implantaat bij adequate repositie criteria. Via spiercontractie en belasting wordt compressie van de fractuur bereikt. Bij gecanuleerde schroeven is het biomechanisch concept hierachter de driepuntsspanning. Het eerste fixatiepunt is de laterale femurcortex, het enterpunt van het implantaat. Het tweede punt is de calcar aan de inferieure en
posterieure zijde. Het derde punt van fixatie is het subchondrale bot van de femurkop. Mogelijk is het meest kritische de plaatsing van de schroef over de inferieure calcar.

Implantaatkeuze: de meta-analyse van Parker en Blundell in 1998 over 25 gerandomiseerde studies met totaal 4.925 patiënten, waarbij fractuurgenezing en complicaties het eindpunt waren, liet zien dat er geen verschil was tussen behandeling met een Sliding Hip Screw of Glijdende Heup Schroef (GHS), zoals de Dynamic Hip Screw (DHS-Synthes®), en behandeling met twee of drie (gecanuleerde) schroeven. Het toevoegen van een plaat, gefixeerd aan de laterale cortex, zou dus geen voordeel hebben boven schroeffixatie. Er leek wel een verschil te zijn ten nadele van pins zonder schroefdraad bij de vergelijking tussen schroeven en pins. In de individuele studies bereikten de verschillen echter geen statistische significante.

De optimale keuze voor een implantaat is derhalve nog niet duidelijk. Schroeven lijken een licht voordeel boven pins. Uiteraard is ervaring met het inbrengen van een bepaald implantaat essentieel en individuele chirurgen maken uit welk implantaat het beste werkt in hun handen.

Eén van de uitkomsten van een retrospectieve studie van 263 patiënten, jonger dan 70 jaar, die in het AMC en het Kantonsspital St.Gallen een osteosynthese ondergingen wegens een gedisloceerde mediale collumfractuur, was dat 50% van de Pauwels-3 fracturen, gestabiliseerd met schroeven, niet genas. Van de Pauwels-2 fracturen daarentegen, die correct gereponeerd waren, genas 93%! Wat kan hiervoor de verklaring zijn? Bij de minder steil verlopende Pauwels-2 fractuur bestaat het kopfragment uit spongieus bot, waaronder na lichte overcorrectie van de kop in valgus de hals enigszins geïncliveerd kan worden. De fixatie van een op deze wijze stabiel gereponeerde fractuur vereist geen zwaar en volumineus implantaat. Spongiosaschroeven, maar ook Hansson pensen voldoen hier goed. Bij stellere fracturen (Pauwels-3) maakt het harde, niet-vervormbare corticale bot van het calcit femoris een substantieel deel uit van het proximale fractuurfragment. Hier resulteert een poging om de fractuur in lichte valgus te reponeren in verlies van botcontact in de caudale helft van de fractuur. Bij dit fractuurtype is dus door repositie in valgus geen stabiliteitswinst te behalen en is anatomische positie de best bereikbare. Alle krachten werken in dat geval op het implantaat in en hier heeft een implantaat met een hoekstabiliteit, zoals de GHS of de 130°-hoekplaat theoretisch de voorkeur. In aansluiting aan gesloten repositie ligt het gebruik van de GHS meer voor de hand. Deze inzichten worden door meerdere studies gedeeld. De voorkeur voor de GHS bij Pauwels-3 fracturen werden ook in een kadaverstudie aangetoond, waarbij de stabilité van schroeven en GHS werd vergeleken. Door deze bevindingen heeft de Pauwels classificatie haar betekenis herkregen; niet voor de beslissing om conservatief of operatief te behandelen, maar wel voor de implantaatkeuze. Dit ondanks het feit dat Parker geen relatie vond tussen het Pauwels type en de kans op (gestoorde) fractuurgenezing. Hij betrok echter de keuze van het implantaat niet in de evaluatie.

Fracturen met een hoek >50° (Pauwels 3 type) dienen ons inziens gefixeerd te worden met een glijdende heupschroef, met minder kans op falen ten opzichte van gecanuleerde schroeven.

Supervisie en ervaring: een technisch goed uitgevoerde repositie en fixatie is van groot belang om de kans op complicaties en revisie te minimaliseren. Om de operatie aan onervaren personeel te delegeren is niet te rechtvaardigen. De tendens om te vertrouwen op het type implantaat boven precieze chirurgische techniek leidt tot aantoonbaar slechtere resultaten. In onervaren handen was de repositie inadequaat uitgevoerd in 45% der gevallen. Sikorski rapporteerde een inadequate techniek in 46% bij patiënten die interne fixatie ondergingen. In twee gerandomiseerde studies met een revisiepercentage van 25-33% werden operaties door chirurgen in opleiding uitgevoerd. Door de auteurs wordt gesuggereerd dat betere techniek gerelateerd is aan het niveau van de operateur en als zodanig het complicatie- en faalpercentage kan verlagen.
4.2.7 Techniek endoprothetische plaatsing

Voor het plaatsen van een kophalsprothese dan wel totale heuparthroplastiek bij een intracapsulaire heupfractuur wordt in het algemeen gebruik gemaakt van de anterolaterale, laterale of posterolaterale benadering. Elke benadering heeft zijn eigen complicaties, zoals dislocaties, zenuwletsels, en meer of minder antalgische gang. Bij een kophalsprothese bedraagt het luxatiepercentage bij een posterolaterale benadering tussen de 6-10%, terwijl dit bij een anterieure en/of anterolaterale benadering 2-4% bedraagt. Overigens zijn de percentages bij uitsluitend kop-halsprothesen gebaseerd op slechts drie artikelen. Bij totale heupimplantaties is het luxatiepercentage bij een posterolaterale benadering tussen de 10-22%, bij een anterolaterale benadering tussen de 2-5%.

Bij anterieure benaderingen is beschadiging van de nervus cutaneus femoralis lateralis en de nervus femoralis mogelijk, terwijl bij de posterieure benadering beschadiging van de nervus ischiadicus mogelijk is.

Anterieure benadering volgens Smith-Peterson: patiënt in rugligging, eventueel met verhoging aan de operatiezijde langs de wervelkolom. Incisie vanaf 2 cm proximaal van de spina iliaca superior anterior, afbuigend naar distaal over de anterolaterale zijde van het bovenbeen. Fascie klieving in hetzelfde vlak. Localisatie van de nervus cutaneus femoralis lateralis, die naar medial wordt afgeprepareerd en gespaard. Vanaf de crista iliaca wordt de tensor fascia femoralis in zijn vezelrichting gekliefd naar distaal en proximaal langs de rand van de crista naar dorsaal afbuigend losgemaakt. Hieronder komt de gluteus maximus à vue en de rectus femoris en een klein deel van de gluteus medius. Voor het vrijleggen van het anterieure kapsel is een release van depees van de rectus femoris noodzakelijk, alsmede van de musculus gluteus medius en minimus. Het kapsel wordt geopend langs de trochanter insertie en over de femurhals, waarna de heup naar anterior met behulp van exorotatie kan worden geluxeerd.

Anterolaterale benadering (ook wel genoemd de Watson-Jones-benadering): patiënt in rugligging, eventueel met verhoging aan de operatiezijde langs de wervelkolom. Incisie vanaf 3 cm. posterior van de spina iliaca superior anterior, licht gebogen na de spina iliaca superior anterior naar de trochanter major naar distaal, evenwijdig aan de as van het femur. Opend van de fascie in dezelfde lijn. Openten vlak tussen tensor fascia femoralis en gluteus medius, spreiden van de tensor naar anterieur en de gluteus medius naar posterieur, in combinatie met flexie en exorotatie van de heup, geeft zicht op het anterieure heupkapsel. Het kapsel wordt geopend langs de trochanterinsertie en over de femurhals naar mediaal, waarna de heup naar anterior met behulp van exorotatie kan worden geluxeerd.

Direct laterale benadering: patiënt in rugligging of laterale positie. De huidincisie is rech, in lijn met de as van het femur over de trochanter major. Incisie van de fascia lata in dezelfde richting. Incisie van depees incisie-overgang van de vastus medialis, aan de meer dorsale zijde, en spierfasie origo van de vascus lateralis meer aan de ventrale zijde, waarbij dit gehele complex naar anterieur wordt afgeschoven van de trochanter major. Daarna kan aansluitend het heupkapsel à vue worden gebracht, incisie van het kapsel verricht worden en op dezelfde wijze de heup geluxeerd worden als bij de anterolaterale benadering.

Posterolaterale benadering (Kocher-Langenbeck): patiënt in zijligging. Licht boogvormige incisie van distaal naar proximaal over het midden van het femur, ter hoogte van de trochanter major afbuigend naar dorsaal richting spina iliaca posterior inferior. Opend van de fascie in lijn van de huidincisie, naar proximaal digitaal klieven van de gluteus maximus in zijn vezelrichting. Door het naar anterieur weghouden van de gluteus medius komen de heupexorotatoren à vue, welke dicht bij de insertie aan de trochanter major gekliefd kunnen worden (piriformis, superior gemellus, obturator internus en interior gemellus). Door deze musculatuur naar dorsaal af te schuiven komt het heupkapsel à vue, wat T-vormig geïncideerd kan worden, waarna de heup in flexie, adductie en endorotatie geluxeerd wordt.

Type arthroplastiek: na een totale heuparthroplastiek is het luxatiepercentage mogelijk hoger dan bij een hemiarthroplastiek. Voldoende gerandomiseerde studies ontbreken echter. Hoewel in de literatuur aanwijzingen zijn voor een hoger percentage aseptische loslating bij totale heuparthroplastieken in vergelijking met kophalsprothesen, wordt dit niet ondersteund door het Zweedse heupprothese-register. Er is onvoldoende bewijs een voorkeur uit te spreken ten aanzien van het plaatsen van een totale heupprothese, een unipolaire kop-
halsprothese of een bipolaire kop-halsprothese. Ook met betrekking tot de keuze ongecementeerd versus gecementeerd kan geen éénduidige conclusie getrokken worden, hoewel de meest recente studies aanwijzingen geven dat de voorkeur uit dient te gaan naar een gecementeerde versie, gezien het betere functionele resultaat met minder pijn.

De resultaten van de Nederlandse ARTHRO trial (kop-halsprothese versus totale heupprothese, prospectief, gerandomiseerd) worden in 2006 verwacht en dit is met 270 patiënten de grootst opgezette studie tot nu toe. Een subanalyse na één jaar toonde geen significant verschil aan in de Harris Hip Score, die pijn en functie evaluateert. Momenteel wordt door de groep van Bhandari een mondiale multicentre trial voorbereid om een uitspraak te kunnen doen over Hemiarthroplasty versus Total Hip (HEALTH-trial).
5 Extracapsulaire fractuur

5.1 Introductie
Pertrochantere fracturen stellen de chirurg op vele manieren voor een uitdaging: uniforme classificatie is lastig en de behandelmogelijkheden zijn divers, vaak niet wetenschappelijk onderbouwd en zonder consensus. Instabiele fracturen voegen hier de uitdaging van de biomechanisch zeer ongunstige fractureigenschappen nog eens aan toe. De combinatie van adequaat gereponeerde fractuurfragmenten en de juiste methode van fixatie moet gecontroleerde impactie van de fractuurfragmenten mogelijk maken, bijvoorbeeld door een glijdende proximale schroef, zodat compressie en daarmee toegenomen stabiliteit kan ontstaan. De periostale bloedvoorziening moet hierbij zo weinig mogelijk verstoord worden om de fractuurgenezing niet te verstoren. De kans op uitbreken in osteoporotisch bot moet zo klein mogelijk gemaakt worden door optimale positionering van het implantaat in het bot. Deze voorwaarden benadrukken het belang van een adequate interpretatie van wat (biomechanisch) verwacht mag worden van de fractuurimplantaat constructie. De keuze van het implantaat hangt hierbij in sterke mate af van de mate van instabiliteit van de fractuur: Hoe instabiler de fractuur, des te meer stabiliteit verlangd wordt van het fixatiemateriaal. Voor de stabiele pertrochantere fractuur bestaat eenduidigheid over de behandeling op basis van uitgebreid onderzoek: extramedullaire behandeling (met bijvoorbeeld een glijdende heupschroef GHS) is hier een veilige, simpele, en snelle methode van stabilisatie. Daarnaast is deze methode van behandeling zeer doelmatig, omdat de kosten van het extramedullaire implantaat aanzienlijk lager zijn dan die van een intramedullaire osteosynthese met een heuppen.

5.2 Repositie
Positionering van de patiënt in rugligging en gebruik van een tractietafel is de meest gebruikte methode. Sommigen propaganderen een repositie uit de vrije hand. Door lengtetryctie kan de verkorting opgeheven worden. Varus-valgus kan enigszins worden gecorrigeerd door abductie-adductie van het been aan te passen. Dit wordt bij een intramedullaire fixatie echter sterk beperkt; om een entree van de pen mogelijk te maken is positionering in abductie niet mogelijk. Correctie in endo- en exorotatie is de laatste bewegingsvrijheid die mogelijkheden biedt tot correctie. Men dient zich te realiseren dat de dislocatie van de fragmenten grotendeels bepaald wordt door het fractuurtype en de spieraanhellingen. Vooral bij een type A3 fractuur (intertrochanter) spelen de spieren die aanhechten aan het proximale fragment een belangrijke rol. De abductoren, die aanhechten op de trochanter major disloceren het proximale fragment in abductie. De musculus iliopsoas zal het proximale fragment door zijn aanhechting op de trochanter minor in flexie houden. De exorotatoren van de heup, die aanhechten op de proximale femurschacht, dragen bij tot exorotatie van het proximale fragment. Dit maakt een gesloten repositie tenminste moeizaam. Bij een instabiele A2 fractuur spelen deze krachten een minder storende rol, maar met name dislocatie van de femurschacht naar dorsaal door de zwaartekracht en een flexiecomponent van het proximale fragment door aanhechting van de iliopsoas kunnen tot een niet succesvolle gesloten repositie leiden.

Bij alle trochantere femurfracturen wordt een zo anatomisch mogelijke repositie nagestreefd, alvorens met een osteosynthesetechniek aan te kunnen vangen. Gevalideerde repositiecriteria voor trochantere femurfracturen zijn echter niet eenduidig vastgesteld, zoals dat bij een mediale collumfractuur wel het geval is. Een varusdislocatie in AP richting is een biomechanisch ongunstige situatie. Varus-valgus kan op een AP opname eenvoudig afgemeten worden aan de Caput-Collum-Diaphyse (CCD) hoek tussen de lengteas van de femurhals en de femurschacht. Deze dient tenminste 130° te bedragen. In de laterale projectie dient er een goed alignement te zijn tussen de as van de femurschacht en de as van het collum femoris. Dit betreft de opname zoals eerder beschreven in paragraaf 1.2.2., met 15° endorotatie van het been. Bij de peroperatieve doorlichting opname zal men bij een zuiver zijdelingse opname in neutrale rotatiestand de normale anteverieshoek van het collum van gemiddeld 15° geprojecteerd krijgen. Een zuiver axiale opname kan worden verkregen door met 15° anteveries opzicht van de horizontale stralengang in te schieten. Hierbij zullen de femurschacht en het collum femoris in elkaars verlengde liggen zoals bij de opname hierboven beschreven. Er dient voldoendecontactoppervlak (meer dan 50%) te zijn tussen de hoofddfragmenten van de fractuur: caput collum proximaal (meestal naar ventraal gedisloceerd) en femurschacht distaal (meestal naar dorsaal gedisloceerd). Dit is noodzakelijk om een implantaat vanuit de laterale schachtpositie in het proximale fragment van de hals en kop te kunnen plaatsen. Wanneer de fractuur niet vrijwel anatomisch gereponeerd kan worden, dient open repositie overwogen te worden. Hierbij dienen de mogelijke complicaties die een open repositie met zich mee brengt, afgewogen te worden tegen de nadelen van een (gesloten) suboptimale repositie.
5.3 Fixatietechniek

In het algemeen bestaan voor de behandeling van instabiele pertrochantere femurfracturen twee mogelijkheden: extramedullaire of intramedullaire stabilisatie. De extramedullaire osteosynthese bestaat uit elk type glijdende heupschroef (GHS) in combinatie met een plaat, zoals de Dynamic Hip Screw® (DHS, Synthes) of de Compression Hip Screw® (CHS, Smith & Nephew).

Bij een GHS wordt via een laterale benadering van de femurschacht distaal van het trochanter major de laterale cortex voor de plaatfixatie vrijgeprepareerd. Als eerste wordt de glijdende heupschroef gecanuleerd over een voerdraad ingebracht. Baumgartner heeft de Tip Apex Distance als goede maat voor juiste “lengte” van de heupschroef beschreven, die beneden de 25 mm moet blijven als AP en axiale projectie bij elkaar worden opgeteld. Hierbij wordt echter geheel voorbij gegaan aan het onvermogen te discrimineren in craniocaudale positie (AP opname) en ventrodorsale positie (axiale opname). Optimale positionering van de schroef is op de AP projectie in het centrum of de caudale helft van de kop, met een afstand van 5-10 mm van de tip van de schroef tot de rand van de femurkop (subchondrale bot biedt optimaal houvast). Bij axiale projectie dient de schroef in het centrum van de hals en kop te liggen, dan wel in de dorsale helft. Na positionering van de heupschroef kan de plaatverbinding op eenvoudige en veilige wijze aan de femurschacht bevestigd worden.

Bij een IM osteosynthese wordt een percutaan insertiemethode toegepast, die in verband wordt gebracht met minder peroperatief bloedverlies en een lager infectiepercentage. Vanaf de craniale zijde wordt via een kleine incisie, of net naast de tip van het trochanter major een entreepunt naar de mergholte van het femur gecreëerd. Afhankelijk van het type pen (diameter) zal de mergholte van de femurschacht eventueel opgeboord moeten worden, om een veilige insertie tot in de mergholte te garanderen. De positie van de heupschroef (of – schroeven), dient zo te zijn, of bij sommige typen schroeven twee heupschroeven, dient dusdanig te zijn, dat op de AP projectie de (meest caudale) schroef in de caudale helft van de hals en kop wordt gepositioneerd, eveneens tot in het subchondrale bot. Op de axiale foto is een centrale of dorsale ligging als optimaal te kwalificeren. Deze positionering is in feite conform de plaatsing van een GHS. Het distale gedeelte van de pen wordt met een percutaaan ingebrachte grendelschroef(ven) aan de femurschacht gefixeerd.

5.4 Implaantaatkeuze

De voordelen van de extramedullaire GHS methode zijn de mogelijkheid tot direct open repositie van de fractuur, en de operatietechniek is relatief eenvoudig en veilig. De intramedullaire fixatie bestaat uit een minimaal invasief ingebrachte intramedullaire pen, via een entreepunt in de trochanter major tip, met daar doorheen 1 of meer door de pen glijdende heupschroeven. Voorbeelden hiervan zijn de Gamma Nail® (Stryker), de Intramedullary Hip Screw® (IMHS, Smith & Nephew) en de Proximal Femoral Nail® (PFN, Synthes). Deze percutaan insertiemethode wordt in verband gebracht met minder peroperatief bloedverlies en een lager infectiepercentage. De fractuurimplantaatconstructie kan direct volledig belast worden, als gevolg van de resulterende gunstige biomechanische eigenschappen. Nadeel van de intramedullaire techniek is de hogere moeilijkheidsgraad en het niet vergevingsgezinde karakter. Indien niet de precisietechniek wordt toegepast, bestaat het gevaar voor een additionele fractuur van de femurschacht bij het te krachtig inbrengen van de pen in de femurschacht. Met name bij de eerste generatie pennen is als belangrijke complicatie het ontstaan van een femurschachtfractuur ter plaatse van het distale uiteinde van de pen beschreven. Ook door het ontstaan van additionele letsel bij falende distale vergrendeling kan deze complicatie per- of postoperatief optreden. Resultaten van gerandomiseerde klinische studies die de resultaten van extra- en intramedullaire behandeling bij instabiele fractures vergelijken, zijn nog steeds inconsistent en zeldzaam. De meeste vergelijkende studies focussen op de behandeling van stabiele fractuurtypen. Ook zeer uitgebreid literatuur onderzoek leidt niet tot een behandelsconsensus voor instabiele pertrochantere fractures.
Een overzicht van de sinds 1990 gepubliceerde prospectieve klinische trials die twee methoden vergeleken bij de behandeling van instabile pertrochantere femurfracturen wordt beschreven in Tabel 8. Tabel 9 geeft een overzicht van nog eens 10 gerandomiseerde studies, die echter geen onderscheid maakten tussen stabiele en instabile fracturen, en daarmee niet bijdragen aan het onderbouwen van een bepaalde keuze van behandeling voor instabile fracturen.

Vervolgens worden de resultaten van recente klinische vergelijkende en cohort studies over de intramedullaire behandeling van instabile pertrochantere fracturen weergegeven, en wordt ingegaan op de resultaten van biomechanische studies.

5.5 Gerandomiseerde studies sinds 1990

5.5.1 Intramedullair versus extramedullair

IMHS versus sliding hip screw: twee gerandomiseerde studies vergeleken de resultaten van fractuurfixatie met de Intra Medullary Hip Screw (IMHS®) en een (extramedullaire) glijdende heupschroef combinatie (GHS). Wanneer stabiele en instabile fracturen apart werden beoordeeld en geanalyseerd, werd een aantal verschillen duidelijk voor wat betreft de instabiele fracturen. Het intramedullaire implantaat veroorzaakte 44% minder bloedverlies en koste 23% minder tijd om in te brengen vergeleken met de GHS. De IMHS® liet minder fractuurimpactie zien en daarmee uiteindelijk minder beenlengteverschil, wat weer resulteerde in een hogere mobiliteitsscore bij elke poliklinische controle. De IMHS® liet een betere postoperatieve belastingtolerantie zien, zowel direct postoperatief als bij ontslag. In één studie werd 4% postoperatieve femurschachtfracturen geregistreerd bij IMHS behandelde patiënten. Uitbreken van het implantaat trad in beide groepen even vaak op, meestal als gevolg van het inadequaat positioneren van de heupschroef in de heupkop. Hoewel beide studies geen grote groepen patiënten met stabiele en instabile pertrochantere fracturen onderzochten, concludeerden zij eensluidend dat de GHS de voorkeursmethode van behandeling is voor de stabiele fracturen. De intramedullaire fixatie werd geduid als een veelbelovend alternatief voor de comminutieve, instabile fracturen.

Gamma Nail® versus Glijdende Heupschroef: Adams et al randomiseerden tussen de Gamma Nail® en de sliding hip screw. Sommige uitkomstparameters werden geanalyseerd voor stabiele en instabile fracturen afzonderlijk. Specifieke getallen voor re-operaties en uiteindelijke functie werden niet gegeven, maar 83% van het implantaatfalen bij de Gamma Nail® groep en 85% in de GHS groep gebeurde bij instabile fracturen. Overige complicaties waren gelijk verdeeld over beide implantaatgroepen, en ook de functionele resultaten ontliepen elkaar niet. De conclusie van dit onderzoek vermeldt dat de Gamma Nail® niet routinematig moet worden gebruikt voor alle pertrochantere fracturen. Hoewel dit onderzoek aanzienlijke aantallen patiënten met stabiele fracturen analyseerde, ontbreken exacte en aparte getallen voor complicaties, functionele resultaten en mortaliteit bij patiënten met instabile fracturen. Er werd gesteld dat deze identiek waren aan de getallen van patiënten met stabiele fracturen. Dit beperkt de waarde van de conclusies aanzienlijk.

Gamma Nail® versus hoekplaat: de 90º-hoekplaat werd vergeleken met de Gamma Nail® in een groep van 26 patiënten met instabile pertrochantere fracturen in een gerandomiseerde trial. Na 13 hoekplaten geïmplanteerd te hebben, trad drie keer femurkaposie, twee keer non-union, twee malunions en één keer een breuk van de hoekplaat op. Alle intramedullair behandeld fracturen toonden een ongecompliceerde fractuurconsolidering binnen vijf maanden. Omdat beide groepen slechts uit 13 patiënten bestaan, konden er nauwelijks betrouwbare conclusies verbonden worden aan de gevonden resultaten.

PFN® versus DCS®: Onlangs werden de resultaten van een gerandomiseerd onderzoek, dat de behandelinguitkomsten van de Dynamic Condylar Screw® (DCS, Synthes) en de Proximal Femoral Nail® (PFN) bij instabile intertrochantere (AO/ASIF A.3) fracturen vergeleek. Het belangrijkste verschil tussen de PFN® en een aantal andere intramedullaire implantaten is dat bij de PFN® een extra antirotatieschroef door het proximale deel van de pen in het craniale deel van de femurkop wordt geplaatst, om draaien van fractuurfragmenten te voorkomen. De achterliggende gedachte bij het onderzoek van Sadowski et al was dat een dynamisch plaat/schroefsysteem zoals de DCS® in het algemeen de voorkeur genoot voor stabilisatie van A1 en A2 fracturen, maar niet van A3 fracturen met hun specifieke en anders verlopende fractuurpatronen. Van de 39 geanalyseerde patiënten werden 19 gerandomiseerd voor de DCS®, en 20 voor behandeling met de PFN®. Extramedullaire fixatie duurde gemiddeld twee keer zo lang (Tabel 8) als fixatie met behulp van een PFN®. Open repositie maakte deel uit van de fractuur benadering bij de extramedullaire behandeling, en werd als
moeilijk gescoord bij de helft van de operaties. Bij een kwart van de intramedullair behandelde patiënten was open fractuurrepositie nodig; hiervan werd bij 30% aangegeven dat de repositie moeizaam verliep (p <0.05). Postoperatief werd volledige belasting direct stimuleerd in beide groepen. Patiënten met een DCS® toonden een significant (p <0.05) langer opnageduur (18 ± 7 dagen) vergeleken met patiënten die met een PFN® behandel waren (13 ± 4 dagen). Na één jaar was bij zeven patiënten met een DCS® geen consolidatie opgetreden: bij vijf patiënten brak de schroef uit de femurkop, bij één trad plaatbreuk op, en bij één patiënt werd non-union gezien bij een intacte DCS. Zes van deze patiënten werden opnieuw geopereerd, vergeleken met geen re-operaties in de PFN® groep. Bij de analyse van functionele resultaten werden patiënten met implantaatfalen zoals zojuist beschreven, geëxcludeerd. In de 30 overgebleven patiënten werden bij follow-up geen verschillen in functionele uitkomsten beschreven. De auteurs stellen dat het intramedullaire implantaat een excellente methode van behandeling is voor instabiele pertrochantere fracturen, met bijkomende voordelen van een kortere operatieduur, minder bloedverlies, een kortere opnageduur en minder revisie chirurgie, in vergelijking met de extramedullaire DCS® fixatie. De relevantie van deze conclusie wordt echter beperkt door het kleine aantal patiënten dat in het onderzoek betrokken werd, en het feit dat de DCS® niet (meer) een algemeen geaccepteerde en gebruikte methode van behandeling is voor instabiele pertrochantere fracturen.

5.5.2 Extramedullaire behandelingsmethoden

Mediale verschuivingosteotomie versus glijdende heupschroef: 109 patiënten met instabiele pertrochantere fracturen die gerandomiseerd werden voor ofwel anatomiche repositie en dynamische plaat/schroeffixatie (n=57), ofwel een valgiserende- en medialiserende verschuivingosteotomie eveneens gefixeerd met een GHS (n=52) werden geanalyseerd. Hoewel de osteotomie niet langer als standaard behandeling voor instabiele pertrochantere fracturen geldt, toont het ons wel de basis van het veranderen van de biomechanische kenmerken van een fractuur, zodanig dat buigkrachten omgezet worden in compressiekrachten door middel van extramedullaire fixatie. Het principe van dit soort fixatie is gebaseerd op het verwijderen van de comminutieve zone en het creëren van mediale afsteun en stabiele fixatie door peroperatieve impactie van de cortex punt aan de mediale zijde in de emurschacht. Significant langere operatie tijd en meer bloedverlies werden gevonden bij de mediale verschuivingosteotomie groep, terwijl de incidentie van implantaat gerelateerde complicaties (9%-10%), totale mortaliteit (16%-22%) en het niveau van mobiliteit tijdens follow-up gelijk waren in beide groepen. Bij beide methoden van behandeling werd geen implantaatfalen gezien. In het algemeen, en vergeleken met de resultaten van andere studies over instabiele pertrochantere fracturen, kwamen in beide groepen zeer veel wondproblemen (21%-23%) voor. Over het geheel bezien werd een voorkeur uitgesproken voor de behandeling met anatomiche repositie en fixatie met de GHS. De mediale verschuivingosteotomie werd, als gevolg van de bevindingen in dit onderzoek, niet geadviseerd als standaard behandeling voor instabiele pertrochantere fracturen.

Glijdende heupschroef versus hoekplaat: een andere studie waarin ook uitsluitend extramedullaire fixatie technieken werden vergeleken in instabiele pertrochantere fracturen, randomiseerden tussen de glijdende heupschroef en de 120° hoekplaat bij 233 geïncludeerde patiënten. Alle patiënten werden gestimuleerd direct postoperatief volledig te belasten. De resultaten (Tabel 9) toonden meer implantaatuitbreken (5%), varisering (6%) en mal-unions (15%) bij patiënten die behandeld waren met een glijdende heupschroef. Een beperking van deze studie wordt gevormd door het feit dat functioneel herstel niet geanalyseerd is. De onderzoekers concluderen dat de hoekplaat een veilig implantaat is voor de behandeling van instabiele pertrochantere fracturen, en dat het als een goed alternatief voor de GHS gezien kan worden. Hoewel dit onderzoek laat zien dat de hoekplaat in ervaren handen excellente resultaten kan opleveren, wordt de techniek niet meer als standaard gebruikt of aangeleerd in verband met de complexe en veeleisende operatietechniek.

5.5.3 Intramedullaire behandeling

Gamma Nail® versus Gliding Nail®: deze studie betrof 80 patiënten met instabiele pertrochantere fracturen. De Gliding Nail bestaat uit een intramedullaire pen met proximaal een dynamische femurhalsplaat. Operatietijd, bloedverlies, postoperatieve belasting en functionele resultaten waren gelijk voor beide behandelgroepen. Mortaliteit na één jaar (15%), ziekenhuisverblijf (10 dagen) en functioneel herstel verschillen niet tussen beide groepen, en waren gelijk aan patiënten met stabiele pertrochantere fracturen die behandeld waren met een GHS®. Bij drie patiënten behandeld met Gamma Nails, brak de heupschroef uit. Er werden geen iatrogene schachtfracturen gezien. De geringe neiging tot uitbreken en variseren van de Gliding Nail, werden toegedacht
aan het speciale ontwerp van de glijdende plaat door de pen. De resultaten van het onderzoek laten zien dat de instabiele fracturen zo adequaat gefixeerd worden met een intramedullaire osteosynthese, dat na zes weken de resultaten gelijk zijn aan die van de stabiele fracturen.

Gamma Nail® versus de PFN®: een multicentre studie van Nederlandse bodem waarin de eerste generatie pen (Gamma Nail®) werd vergeleken met een tweede generatie pen (PFN®) gaf qua mortaliteit, morbiditeit en fractuurgenezing vergelijkbare resultaten te zien. Het peroperatief bloedverlies bij de PFN® was significatief lager. Daarentegen werd een laterale protrusie van de heupschroef bij de PFN® vaker gezien. Als enige interessante gegeven werd een tendens opgemerkt dat in de groep van de PFN® geen enkele femurschacht fractuur werd gezien. Dit was bij de meer rigide eerste generatie pen (Gamma Nail®) wel enkele malen het geval, maar bij deze grootte van de studiepopulatie (n=424) werd significantie net niet bereikt (P<0,1).

5.6 Andere (niet gerandomiseerde) studies over instabiele pertrochantere fracturen

5.6.1 Glijdende plaat/schroefsystemen (GHS)

In een multicentre onderzoek vergeleken Lunsjö et al de resultaten van vier extramedullaire fixatiemethoden, de Medoff glijplaat, de Dynamische Heup Schroef (DHS, Synthes®), de DHS met trochanter afsteunplaat® (TSP, Synthes®), en de DCS®, in instabiele pertrochantere fracturen. Bij 569 geïncludeerde patiënten, varieerden de uitbreekpercentages van 4,6% tot 8,2%, wat relatief laag is vergeleken met eerdere publicaties over de SHS-systemen met uitbreekpercentages van ongeveer 10%. De resultaten van het onderzoek maakt geen voorkeur voor één van de geteste schroefplaat systemen duidelijk.

5.6.2 Gamma Nail®

Veel onderzoeksresultaten zijn gepubliceerd over de Gamma Nail®. De meeste van deze onderzoeken waren klinische cohort studies die prospectief of retrospectief aanzienlijke aantallen patiënten met pertrochantere femurfracturen onderzochten. In het algemeen heeft de Gamma Nail® bewezen de instabiele fracturen voldoende te stabiliseren om de massale trekkrachten lateraal en compressiekrachten mediaal te weerstaan. Op basis van de problemen met de Gamma Nail die beschreven worden in bovengenoemde studies, bestaat er echter nog ruimte voor verbetering binnen het concept, wanneer gekeken wordt naar het uitbreken van de heupschroef 25, de eigenschappen van het implantaat, de iatrogene schachtfracturen en de implantatietechniek.

5.6.3 Proximal Femoral Nail®

Onlangs zijn de resultaten van 3 prospectieve studies met de Proximal Femoral Nail® (PFN) gepubliceerd. Alle drie onderzochten de behandeling van instabiele pertrochantere fracturen in cohorten van meer dan 100 patiënten per onderzoek. Het percentage uitbreken lag op of 0,6% tot 1,4%, terwijl de neiging tot varisering zeer laag was in vergelijking met andere implantaten. In alle studies werden geen schachtfracturen ter plaatse van het distale uiteinde van de pen gevonden, evenmin als mechanisch falen van het implantaat. Deze opmerkelijke klinische resultaten worden ondersteund door de resultaten van biomechanische studies en invitro-onderzoeken.

5.6.4 Biomechanische studies

Belastbaarheid, buigkracht en stabiliteit van de GHS®, Gamma Nail® en de PFN®, werden invitro getest in instabiele pertrochantere fracturen, onder statische en dynamische belasting. De intramedullaire implantaten waren enkele malen sterker dan de GHS®, met weinig of geen vervorming bij maximale belasting. Deze biomechanische studies tonen dat intramedullaire implantaten, wanneer perfect gepositioneerd, direct postoperatief volledige belasting en maximale mobilisatie goed verdragen.

5.7 Discussie

Met dit overzicht wordt een ruime hoeveelheid aan behandelingsmogelijkheden weergegeven en de bijbehorende resultaten. Hoewel er veel en uitgebreid onderzoek gedaan is naar de behandeling van pertrochantere femurfracturen, is er geen wetenschappelijk onderbouwde consensus over de meest geschikte
methode van behandeling voor de separate stabiele en instabiele fracturen. Ook meta-analyses zoals die van Parker maakt hiertussen onvoldoende onderscheid.

Slechts gerandomiseerde studies na 1990 werden besproken, omdat eerdere onderzoeksresultaten mogelijk beïnvloed zijn ten voordele van het GHS-systeem, als gevolg van de toen nog zeer geringe ervaring met intramedullaire osteosynthese. Wanneer we in het algemeen kijken naar de resultaten van de 8 gerandomiseerde studies waarbij instabiele fracturen apart werden geanalyseerd, werd een hoog percentage variëring en uitbreken van het implantaat gevonden, en een nog hogere incidentie van wondproblemen en -infecties. Behandeling van instabiele fracturen met een intramedullaire pen toonden minder complicaties. Hoewel sommigen de theoretische voordelen van de Gamma Nail® niet konden bevestigen, vonden anderen, die instabiele fracturen als aparte onderzoeksgroep bestudeerden, andere resultaten: zij vonden een lager risico op implantaat gerelateerde complicaties, vroegere en betere mobilisatie, minder fractuur-impactie en daarmee minder beenverkorting bij intramedullaire fixatie. Bij een studie waarbij uitsluitend patiënten met instabiele fracturen werden onderzocht, werden significant meer fractuurgerelateerde complicaties en implantaat falen na extramedullaire fixatie gezien, terwijl deze problemen nauwelijks voorkwamen bij de intramedullair behandelde groep patiënten. Helaas heeft geen van de gerefereerde onderzoeken die intramedullaire behandeling vergeleek met extramedullaire behandeling, voldoende patiënten geïncludeerd met instabiele fracturen. Mede hierdoor ontbreekt nog steeds het wetenschappelijk bewijs voor een consensusbehandeling voor instabiele pertrochantere fracturen.

Met het toenemen van de ervaring van de chirurgen met de intramedullaire fixatiemethoden en optimalisering van implantaat en techniek zullen ook de behandelingssresultaten verder verbeteren, en mag verwacht worden dat het aantal intra- en postoperatieve complicaties af zullen nemen. Aanpassingen zoals specifieke distale vergrendelmogelijkheden zullen de kans op postoperatieve problemen verder reduceren, en het benadrukken van adequate fractuurrepositie en correctie positionering van het implantaat in de femurkop zal helpen de kans op uitbreken van het implantaat verder te verminderen.

5.8 Conclusie

De diversiteit van osteosynthese systemen, beschikbaar voor de behandeling van pertrochantere fracturen, illustreert de veelheid van problemen die frequent bij de behandeling worden gezien. Een afname van het aantal uitgebroken implantaten zal echter niet gerealiseerd worden door nog meer en nieuwere fixatie systemen, daar implantaten niet kunnen corrigeren voor een slechte fractuurrepositie of inadequate positionering van het fixatie materiaal.

In het licht van de onderzoeksresultaten, gepubliceerd vanaf 1990, kan geconcludeerd worden dat routine gebruik van intramedullaire systemen voor stabiele pertrochantere fracturen moet worden ontraden. Voor deze fracturen biedt een van de glijdende plaat/schroefcombinaties een veilig en simpel alternatief met goede resultaten. Voor instabiele trochantere fracturen is het intramedullaire implantaat biomechanisch superieur; de klinische voordelen worden gesuggereerd en bepleit, maar moeten nog steeds met gedegen wetenschappelijk onderzoek worden aangetoond.
Tabel 8 Gerandomiseerde onderzoeken naar de behandelingresultaten van instabiele pertrochantere fracturen

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Jaar</th>
<th>Methode</th>
<th>Aantal patiënten</th>
<th>Gem. leeftijd (jaren)</th>
<th>Instabiele fracturen (%)</th>
<th>Operatie-duur (min)</th>
<th>Bloedverlies (ml)</th>
<th>Fixatie-falen (%)</th>
<th>Uitbreken/varus (%)</th>
<th>Femur-schacht fractuur (%)</th>
<th>Wond probleem / infectie (%)</th>
<th>Re-operatie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desjardin 1993</td>
<td></td>
<td>Anatom. repositie Mediale verschuiving-osteotomie</td>
<td>57</td>
<td>81</td>
<td>100</td>
<td>83</td>
<td>340</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Bucatto 1998</td>
<td></td>
<td>CHS RAB-plate</td>
<td>122</td>
<td>81</td>
<td>100</td>
<td>63</td>
<td>400</td>
<td>2</td>
<td>15</td>
<td>?</td>
<td>?</td>
<td>11</td>
</tr>
<tr>
<td>Baumgaertner 1998</td>
<td></td>
<td>GHS</td>
<td>68</td>
<td>79</td>
<td>49</td>
<td>80</td>
<td>340</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>?</td>
<td>7</td>
</tr>
<tr>
<td>Hardy 1998</td>
<td></td>
<td>GHS IMHS</td>
<td>67</td>
<td>46</td>
<td>72</td>
<td>245*</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>?</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Fritz 1999</td>
<td></td>
<td>GHS IMHS Gliding Nail</td>
<td>50</td>
<td>80</td>
<td>68</td>
<td>57</td>
<td>144</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Adams 2001</td>
<td></td>
<td>GN SHS</td>
<td>203</td>
<td>81</td>
<td>53</td>
<td>55</td>
<td>244</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Pelet 2001</td>
<td></td>
<td>GN SHS AB-plate</td>
<td>13</td>
<td>70</td>
<td>100</td>
<td>86</td>
<td>550</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sadowski 2002</td>
<td></td>
<td>PFN DCS</td>
<td>20</td>
<td>?</td>
<td>100</td>
<td>82</td>
<td>?</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* = significant verschil bij p ≤ 0,05.

GN = Gamma Nail
GHS = Glijdende Heup Schroef
PAT = Patella Tendon
SJS = Stabilisatie Schroef
PN = Proximal Femoral Nail
IMHS = Intramedullaire Heup Schroef
AB = Blade Plate
DCT = Dynamic Condylair Screw

Pagina 40 van 48
<table>
<thead>
<tr>
<th>Auteur</th>
<th>Jaar</th>
<th>Methode</th>
<th>Aantal patiënten</th>
<th>Gem. leeftijd (jaren)</th>
<th>Instabiele fracturen (%)</th>
<th>Implantaat falen (%)</th>
<th>Uitbreken / varus (%)</th>
<th>Femurschacht fractuur (%)</th>
<th>Wond probleem / infectie (%)</th>
<th>Re-operatie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridle</td>
<td>1991</td>
<td>GN</td>
<td>49</td>
<td>82</td>
<td>63</td>
<td>?</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GHS</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Stark</td>
<td>1992</td>
<td>SHS</td>
<td>56</td>
<td>75</td>
<td>57</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ender Nail</td>
<td>36</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>11</td>
</tr>
<tr>
<td>Radford</td>
<td>1993</td>
<td>GN</td>
<td>100</td>
<td>81</td>
<td>?</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GHS</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>12*</td>
<td>6</td>
</tr>
<tr>
<td>Aune</td>
<td>1994</td>
<td>GN</td>
<td>177</td>
<td>77</td>
<td>51</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>?</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GHS</td>
<td>201</td>
<td>57</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>3*</td>
</tr>
<tr>
<td>Butt</td>
<td>1995</td>
<td>GN</td>
<td>47</td>
<td>79</td>
<td>51</td>
<td>7</td>
<td>4</td>
<td>17</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GHS</td>
<td>48</td>
<td>38</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>O’Brien</td>
<td>1995</td>
<td>GN</td>
<td>53</td>
<td></td>
<td>43</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GHS</td>
<td>49</td>
<td></td>
<td>43</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Hoffman</td>
<td>1996</td>
<td>GN</td>
<td>31</td>
<td>81</td>
<td>33</td>
<td>?</td>
<td>0</td>
<td>10</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ambi Hip Screw</td>
<td>36</td>
<td></td>
<td>33</td>
<td>?</td>
<td>10</td>
<td>0</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>Park</td>
<td>1998</td>
<td>GN-Asia Pacific</td>
<td>30</td>
<td>73</td>
<td>53</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHS</td>
<td>30</td>
<td>63</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Hoffmann</td>
<td>1999</td>
<td>GHS</td>
<td>54</td>
<td>82</td>
<td>63</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMHS</td>
<td>56</td>
<td>64</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Dujardin</td>
<td>2001</td>
<td>GHS</td>
<td>30</td>
<td>84</td>
<td>53</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Static Nail</td>
<td>30</td>
<td>73</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

* = significant verschil bij p ≤ 0,05

GN = Gamma Nail

GHS = Glijdende Heup Schroef

SHS = Sliding Hip Screw (=GHS)

CHS = Compression Hip Screw (=GHS)

IMHS = Intramedullaire Heup Schroef
6 (Na)behandeling

6.1 Osteoporose

Jaarlijks komen er 83.000 osteoporotische fracturen voor. Osteoporotische fracturen (pols, wervel, heup) gaan gepaard met een verhoogde morbiditeit en in het geval van heupfracturen met een toegenomen mortaliteit. Met behulp van een vijftal screenende vragen en eenvoudige parameters kan een risicoscore opgesteld worden met betrekking tot osteoporose (Tabel 10):

Heeft u wel eens iets gebroken na het 50e levensjaar?
Heeft u een of meerdere ingezakte rugwervels?
Komt er osteoporose in de familie voor?
Weegt u minder dan 60 kg als vrouw of minder dan 67 kg als man?
Ligt u meer dan 20 uur per dag in bed of op de bank?
Gebruikt u corticosteroïden ≥7,5 mg prednisonequivalent per dag?

<table>
<thead>
<tr>
<th>Risicofactor</th>
<th>Fractuurrisico</th>
</tr>
</thead>
<tbody>
<tr>
<td>fractuur na 50e levensjaar</td>
<td>x 2,0</td>
</tr>
<tr>
<td>bestaande wervelfractuur</td>
<td>x 4,0</td>
</tr>
<tr>
<td>positieve familieaanamnese (in het bijzonder heupfractuur bij moeder)</td>
<td>x 1,5</td>
</tr>
<tr>
<td>laag lichaamsgewicht < 67 kg (man)</td>
<td>x 1,5</td>
</tr>
<tr>
<td>< 60 kg (vrouw)</td>
<td>x 2,0</td>
</tr>
<tr>
<td>ernstige immobiliteit</td>
<td>x 2,0</td>
</tr>
<tr>
<td>gebruik van corticosteroïden (≥7,5 mg prednisonequivalent per dag)</td>
<td>x 2,0</td>
</tr>
</tbody>
</table>

Vanuit deze scorelijst is een risicoscore te berekenen en kan besloten worden aanvullende analyse te doen in de vorm van een botdichtheidsmeting en/of te starten met therapie. Therapie met bisfosfonaten verkleint de kans op een volgende fractuur op langere termijn.

Het wordt aanbevolen om een botdichtheidsmeting te overwegen bij vrouwen van 50 jaar en ouder bij een doorgemaakte fractuur na de leeftijd van 50 jaar (dit geldt dus voor bijna alle patiënten met een heupfractuur). Een botdichtheidsmeting kan achterwege worden gelaten wanneer op basis van meerdere aanwezige risicofactoren c.q. doorgemaakte fracturen al tot behandeling van osteoporose is besloten. Wanneer er sprake is van een heupfractuur, ondanks behandeling met een bisfosfonaat, dient overleg plaats te vinden met een osteoporose-specialist om te beoordelen of er een indicatie bestaat voor teriparatide-injecties.

6.2 Valrisico

Een verhoogd risico op vallen kan eenvoudig met de valrisicoscore ingeschat worden:
Bent u vóór deze val die heeft geleid tot de gebroken heup, in het afgelopen jaar al vaker gevallen?
Neemt u slaaptabletten of vier of meer medicijnen?
Kon u vóór de fractuur makkelijk opstaan vanuit een stoel op kniehoogte? (een stoel waarbij de voeten plat op de vloer staan en de knieën in een rechte hoek)
Heeft u een probleem met het zien, dat invloed heeft op uw zelfvertrouwen of uw vaardigheid vermindert bij het uitvoeren van taken?
Zijn er problemen met duizeligheid die niet eerder onderzocht zijn en/of moeilijkheden met het evenwicht geven, die niet eerder onderzocht zijn?
Gebruikte u al voor de recente val een loophulpmiddel?
Daaraan toegevoegd kunnen worden of er sprake is van een ernstige ziekte zoals morbus Parkinson, dementie, gewrichtsslijtage van knie of heup, beroerte of iets anders dat het evenwicht beïnvloedt, en/of er sprake is van urine-incontinentie.
Als één of meer vragen met ja worden beantwoord, dan is er aanleiding nader onderzoek te doen en eventueel preventieve maatregelen te nemen.
7 Fysiotherapie

7.1 Inleiding

Op te merken is, dat er weinig met literatuur onderbouwde statements op te stellen zijn over fysiotherapie. In een aantal artikelen wordt gesproken over nut van quadricepstraining voor toename in stabiliteit en (loops)nelheid. Een aantal anderen vertellen over intensief oefenen, versneld ontslag of interdisciplinaire aanpak. Ook toepassing van thuisbehandelingen (community rehabilitation) lijkt voordelen, want patiënten zijn sneller naar de thuissituatie terug. Er is wel te vinden dat er fysiotherapie gegeven wordt, maar nergens wordt eénduidig omschreven wát die fysiotherapie inhoudt.

In het ziekenhuis zal de fysiotherapie er op gericht zijn om complicaties te voorkomen (pneumonie, decubitus etc.) en om de patiënt weer snel zo zelfstandig mogelijk te krijgen en naar een ontslag te brengen. Dat wil zeggen als de patiënt naar huis gaat moet hij/zij veilig transfers kunnen uitvoeren (of in de thuissituatie is iemand bereid en in staat om daarvoor de noodzakelijke hulp te bieden = ‘mantelzorg’) en zelfstandig kunnen lopen (+ eventueel traplopen) en goed geïnstrueerd zijn ten aanzien van risicobewegingen (afhankelijk van het type operatie).

Voor de periode na de opname is de noodzakelijke fysiotherapeutische zorg o.a. afhankelijk van de toestand waarin de patiënt binnenkwam (patiëntprofiel). Specifieke aandacht dient er te zijn voor het leren gebruiken van een hulpmiddel (voor voorzover dat voorheen niet nodig was), conditie (algemeen – spierkracht), hematom / pijn, instureerbaarheid / verwardheid, coördinatieproblemen, visusproblemen, co-morbiditeit (bijv. COPD in relatie tot optreden pneumonie) en de voedingstoestand (preventie decubitus).

De zorg is eveneens gerelateerd aan de plaats waar de patiënt naar toe gaat na ontslag. Fysiotherapie zal thuis in vele gevallen nog nodig zijn voor ondersteuning en begeleiding in het afbouwen van de krukken en eventueel een ADL-check. Maar als de patiënt naar een andere instelling gaat (flankerend beleid in verzorging), dan is fysiotherapie vaak in uitgebreidere vorm en langer noodzakelijk, gezien de meestal slechtere uitgangssituatie van vóór de val. Een goede overdracht is voor de continuïteit van de (na)zorg belangrijk.

7.2 Lopen met hulpmiddelen

Bij streven naar volledige belasting is het raadzaam om ook naar een goed gestrekt looppatroon te streven. Anatomisch is beschreven dat de banden en het kapsel rond het heupgewricht door de spiraalgewijze richting bij extensie op spanning komen en daardoor meer stabiliteit kunnen geven. Daarnaast is bij patiënten met een heupoperatie (vooral bij dorsolaterale benadering) het lopen in flexie pijnlijker doordat de wond op rek komt en doordat de bilmusculatuur bij aanspannen ook nog eens aan de wondomgeving trekt. Een beter uitgestrekt looppatroon wordt door veel patiënten ook ervaren als een ‘lichtere’ manier van lopen. Afbouwen van steun (N.B. 100% belasten toegestaan is uitgangspunt) is bij de meeste mensen het beste te doen door symmetrisch gebruik van krukken. Dat wil zeggen dat lopen met twee krukken in 2-telsgang over zou moeten gaan in lopen met twee handstokken in 2-telsgang en pas daarna kan de stok aan de niet-aangedane zijde weggelaten worden en met één handstok gelopen worden. Lopen zonder stokken kan als de stabiliteit rond de heup dat toelaat en veiligheid van lopen is gewaarborgd.

Het is duidelijk dat niet alle patiënten dat eindstadium kunnen bereiken. Leeftijd, angst en co-morbiditeit zijn hierin belangrijke factoren.

7.2.1 Rekje

Onlasten van het lichaamsgewicht door een rekje te gebruiken kan van 40% tot maximaal 50% van het lichaamsgewicht.

Een rekje geeft veel passieve ondersteuning van de balans. Nadeel is dat het rekje moet worden opgetild bij het verplaatsen. Het rekje moet op ongeveer dezelfde hoogte worden ingesteld als een elleboogkruk (handvathoogte op ± de hoogte van de processus styloideus ulnae).

Om patiënten niet het gevoel van voorwaartse instabiliteit te geven bij het lopen in het rekje zouden de twee voorpootjes één gaatje hoger kunnen worden afgesteld ten opzichte van de twee achterste. Het
rekje kantelt daardoor minder snel voorover en de patiënt kan beter in het rekje lopen in plaats van er achter.

7.2.2 Rollator
Ontlasten van het lichaamsgewicht door een rollator te gebruiken kan van 40% tot maximaal 50% van het lichaamsgewicht.
Optillen zoals bij een rekje hoeft niet. Er is veel passieve ondersteuning. Nadeel is het kunnen wegrijden van de rollator. Cave: een teveel gebogen/geflexteerde houding bij het lopen.
De hoogte in principe instellen als rekje.
N.B. de zogenaamde drijpuntsrollators zijn minder stabil dan de 4-punts variant.

7.2.3 Elleboogkrullen
Gebruik van één elleboogkruk reduceert maximaal 25-40% van het lichaamsgewicht. Gebruik van 2 krukken kan éénzijdig reduceren tot maximaal 100% van het lichaamsgewicht bij gebruik van het juiste looppatroon (3-telsgang). Bij tweezijdige reductie kunnen twee elleboogkrullen de belasting op de benen reduceren van 25% tot 50% van het lichaamsgewicht.
Hoogte instellen met handvathoogte op ± de hoogte van de processus styloideus ulnae. Dat geeft een hoge nauwkeurigheid die alleen nog beïnvloed wordt door de afstand van de gaatjes die in de stok zitten. Je moet dan kiezen tussen twee gaatjes (de ene nét hoger dan de processus en de andere nét lager).
Bij lopen in gestrekte houding is de afstand die de stokken naar voren worden gezet zonder daarbij naar voren te buigen ± gelijk aan de stap lengte.
Cave: bestaande flexiecontracturen of andere afwijkingen die de houding beïnvloeden kunnen invloed hebben op de uiteindelijk gekozen stokhoogte.

7.2.4 Handstokken
Hogere belasting geeft instabiliteit.
(INTERNATIONAL CLASSIFICATION OF FUNCTIONING DISABILITY AND HEALTH –ICF)
Hoogte instellen met handvathoogte op ± de hoogte van de processus styloideus ulnae (zie 7.2.3).

7.3 Spierkracht training
In de literatuur wordt wel gesproken over het nut van spierkrachttraining. Er zijn onderzoeken die aangeven dat het meerdere malen per dag aanspannen van de quadriceps in zit op een stoel al een verbetering geeft van de kracht. Ook trainen van de abductoren zou een beter looppatroon bewerkstelligen. Elke arts of fysiotherapeut zal een stabiel, mooi en doelmatig looppatroon graag bij zijn patiënt zien. Het is het dus zinvol om als fysiotherapeut daaraan te werken. En afhankelijk van de individuele mogelijkheden van de patiënt kun je komen tot de meest optimale situatie voor die patiënt.
Zowel bij abductoren- als quadricepstraining moet goed rekening gehouden worden met de belastbaarheid van zowel de ossale structuren als van de patiënt in het geheel.
Belangrijk is om er rekening mee te houden dat in de vroege fase na ontslag (mét of zonder operatie), er nog veel weefsel beschadigd is en zal moeten herstellen. Gebruik van grote lastarmen en/of grote weerstanden is in het begin dus niet verstandig. In de eerste 6-8 weken zal daarom vooral functioneel geofend moeten worden. Bij normaal gebruik van de spieren treedt ook al een spierkrachtverbetering op in een groot aantal van de patiënten.

7.4 Mobilisatietechnieken

PATIENT UIT BED HALEN via rugligging, horizontaal draaien en dan tot zit komen.
Benen niet naar endorotatie laten komen door geopereerde been te vroeg uit bed te laten gaan.
Patiënt laten opstaan uit de stoel
Goed het geopereerde been vooruit zetten met de voet aan de grond en dan het gewicht naar voren laten brengen om op te staan.
Idem maar nu met behulp van een rekje. Het rekje wordt pas gebruikt nadat er belasting op de benen is gebracht.

7.5 Loopvormen (2-,3-en 4-telsgang)

2-telsgang (één stok): de stok wordt tegelijkertijd naar voren verplaatst met het tegengestelde (aangedane) been tot op dezelfde lijn. Daarna wordt het andere been een stap naar voren geplaatst.

3-telsgang (één stok): eerst wordt de stok naar voren geplaatst. Daarna wordt het tegengestelde been naar voren geplaatst op dezelfde lijn als de stok. Hierna wordt het andere been een staplengte naar voren geplaatst.

2-tels diagonaal gang (twee stokken): het hulpmiddel in de linkerhand wordt tegelijk met de rechtervoet naar voren geplaatst en het hulpmiddel in de rechterhand tegelijk met de linkervoet. Hiervoor is een betere stabiliteit in de romp nodig dan bij de 4-telsgang.

4-tels diagonaal gang (twee stokken): eerst wordt de kruk aan de ‘gezonde’ zijde naar voren gezet daarna het aangedane been tot naast de kruk. Vervolgens wordt de stok aan de aangedane zijde naar voren gezet voorbij de 1e stok waarna het ‘gezonde’ been naast de tweede kruk wordt geplaatst. Er is nooit meer dan één punt los van de grond.

Driehoeksgang: beide hulpmiddelen worden samen met het aangedane been op één lijn geplaatst. Het andere been wordt er een staplengte vóór geplaatst. Gaan de hulpmiddelen tegelijk dan spreek je van een 2-tels driehoeksgang en gaan de hulpmiddelen ná elkaar dan spreek je van een 3-tels driehoeksgang.

Zwaai gang: beide hulpmiddelen worden tegelijkertijd naar voren geplaatst en de beide benen worden in één zwaai tegelijkertijd naar voren geplaatst. Gaan de benen tot de lijn waar ook de stokken staan dan is dat “zwaai tot de poort” en gaan de benen voorbij die lijn dan spreek je van “zwaai door de poort”.

De loopvormen zijn ook beschikbaar in video (.mpg) formaat.
8 Resocialisatie

8.1 Introductie
Resocialisatie heeft te maken met de ontslagsituatie na de ziekenhuisopname, de revalidatie fase, en met de kans om weer naar de woonsituatie voor de fractuur terug te keren. De ontslagbestemming uit het ziekenhuis is weer sterk afhankelijk van een (na te streven) gemiddelde opnameduur en eventuele afspraken die er gemaakt zijn tussen ziekenhuizen en verpleeghuizen voor de revalidatie van deze oudere heupfractuur patiënten.

Dezelfde factoren die genoemd zijn bij het patiëntprofiel ter bepalen van de kans op mortaliteit en morbiditeit zijn eveneens van belang om te kunnen inschatten of de patiënt weer naar huis kan worden ontslagen. Complicaties tijdens de ziekenhuisopname en het optreden van urine-incontinentie hebben een negatieve invloed op de kans om naar huis terug te keren.

Het verdient extra aandacht om de kans op succesvolle revalidatie en resocialisatie in een vroeg stadium in kaart te brengen. Hiervoor zijn de preëxistente functionele status en het maatschappelijk functioneren de meest belangrijke factoren.

8.2 Functionele status
Er zijn verschillende meetinstrumenten om de functionele status vast te stellen waarvan de Barthel Index reeds bij het patiëntprofiel genoemd is. Een nadeel van de index is dat er sprake is van een ‘bodemeffect’ (dat wil zeggen lichte beperkingen worden niet gemeten) en dat bijzonder dagelijkse levensverrichtingen niet worden meegenomen. Juist dit is van groot nut om een inschatting te kunnen maken omtrent de mogelijkheden van de patiënt. Een alternatief is het in Nederland ontwikkelde Revalidatie Activiteiten Profiel (RAP) van Bennekom en Jelles (1995), (Tabel 11).

<table>
<thead>
<tr>
<th>Tabel 11 Revalidatie Activiteiten Profiel (RAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activiteit</td>
</tr>
<tr>
<td>Communicatie</td>
</tr>
<tr>
<td>Uiten</td>
</tr>
<tr>
<td>Begrijpen</td>
</tr>
<tr>
<td>Mobiliteit</td>
</tr>
<tr>
<td>Houding bewaren</td>
</tr>
<tr>
<td>Houding veranderen</td>
</tr>
<tr>
<td>Lopen</td>
</tr>
<tr>
<td>Traplopen</td>
</tr>
<tr>
<td>Gebruik maken van vervoer</td>
</tr>
<tr>
<td>Persoonlijke verzorging</td>
</tr>
<tr>
<td>Eten en drinken</td>
</tr>
<tr>
<td>Wassen en uiterlijke verzorging</td>
</tr>
<tr>
<td>Aankleden</td>
</tr>
<tr>
<td>Utkleden</td>
</tr>
<tr>
<td>Continentie bewaren</td>
</tr>
<tr>
<td>Bezigheden</td>
</tr>
<tr>
<td>Maaltijden verzorgen</td>
</tr>
<tr>
<td>Huishoudelijk activiteiten</td>
</tr>
<tr>
<td>Hobby’s</td>
</tr>
</tbody>
</table>

* Score mogelijkheden: doet activiteit zonder moeite (0); enige moeite (1); veel moeite of met hulp (2); niet mogelijk (3)

8.3 Maatschappelijk functioneren

Betreffende het maatschappelijk functioneren dient de preëxistente woonsituatie in kaart gebracht te worden, inclusief de beschikbaarheid van mantelzorg. Er kan op die manier een inschatting gemaakt worden ten aanzien van de mogelijkheid om rechtstreeks naar de oude woonsituatie terug te keren,
aanvullende maatregelen te treffen of een (tijdelijk) andere woonomgeving te adviseren. Een overzicht wordt gegeven in Tabel 12.

<table>
<thead>
<tr>
<th>Woonsituatie</th>
<th>Eigen woning</th>
<th>Gelijkvloers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met trappen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouderenwoning (serviceflat)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verpleeghuis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somatisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychogeriatrisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantelzorg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In staat tot verlenen hulp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niet in staat tot verlenen hulp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen partner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huishoudelijke hulp … Uren/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADL hulp …… Uren/week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thuiszorg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naar eigen woning (eventueel met thuiszorg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naar serviceflat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naar (tijdelijke) verzorgingshuis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naar verpleeghuis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somatisch (revalidatie-afdeling, transfer unit, schakelunit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychogeriatrisch (tijdelijk, revalidatie of chronisch)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 12 Maatschappelijk functioneren

<table>
<thead>
<tr>
<th>Ontslagbeleid</th>
<th>Naar eigen woning (eventueel met thuiszorg)</th>
<th>Naar serviceflat</th>
<th>Naar (tijdelijke) verzorgingshuis</th>
<th>Naar verpleeghuis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontslagbeleid</td>
<td>Naar eigen woning (eventueel met thuiszorg)</td>
<td>Naar serviceflat</td>
<td>Naar (tijdelijke) verzorgingshuis</td>
<td>Naar verpleeghuis</td>
</tr>
</tbody>
</table>

8.4 Ontslagbeleid

In het ziekenhuis is de aandacht vooral gericht op de directe postoperatieve zorg met fysiotherapeutische ondersteuning gericht op de vroege mobilisatie en het voorkomen van complicaties. In een verpleeghuis met revalidatiemogelijkheden concentreert de primaire zorg zich meer op het functionele herstel en het herkrijgen van zelfstandigheid in de activiteiten van het dagelijks leven (ADL). Verzorging, fysiotherapie, ergotherapie, maatschappelijk werk en eventueel psycholoog staan in een multidisciplinair team onder supervisie van een verpleeghuisarts voor deze taken garant. Ondanks deze intensieve bemoeienissen is echter niet bewezen dat er een positief effect is op het functionele herstel en de kwaliteit van leven op (middell) lange termijn, 4 maanden na ziekenhuisontslag. Ook het percentage patiënten dat uiteindelijk kon terugkeren naar de eigen woonsituatie werd niet beïnvloed. Van de tevoren thuiswonzende patiënt kon 63% terugkeren naar huis, 4% werd geplaatst in een verzorgingshuis en 21% moest worden opgenomen in een verpleeghuis, een substantieel deel dus. In een prospectieve studie in eigen land werd op termijn van 1 maand post-trauma een significant beter functioneringsniveau gezien en werd aangetoond dat het resultaat sneller bereikt bij een multidisciplinaire benadering.

In met name Zweden en het Verenigd Koninkrijk zijn meerdere studies bekend, waarin het mogelijk is gebleken een groter deel van de patiënten naar huis te kunnen laten terugkeren bij een gericht revalidatie- en resocialisatieprogramma. Hierbij werd in het ziekenhuis zelf een ketenzorg opgezet (“orthogeriatrisch ward”) met intensieve fysiotherapie en uitbreiding van verpleeghulp in de thuiszorg. In ons land zijn vergelijkbare zorgketens opgezet bij patiënten met een cerebrovasculair accident (CVA) in een zogenaamde “stroke-service”. Recente publicaties vanuit deze hoek geven wel degelijk een betere uitkomst op langere termijn, kostenbesparing en kwaliteit van leven te zien, met een verkorting van de opnameduur in het ziekenhuis.

De opnameduur in het ziekenhuis kan natuurlijk bekort worden door een versneld ontslagbeleid naar een verpleeghuis, echter qua kosten betekent dit slechts een verschuiving van ziekenhuis naar verpleeghuis, met slechts een marginale winst op de totale kosten. In de afgelopen jaren is de gemiddelde opnameduur van ouderen met een heupfractuur teruggebracht van 23 (1998) naar 15 dagen (2005) door een goede samenwerking tussen ziekenhuizen en verpleeghuizen en een grotere capaciteit van verpleeghuisbedden. Het belangrijkste voordeel van een kortere opnameduur is de winst met betrekking tot de acute, maar
ook electieve opnamecapaciteit in het ziekenhuis. Waar in het verleden een oudere patiënt met een heupfractuur vaak wegens capaciteitsproblemen moest worden overgeplaatst tot ver buiten de eigen regio, is dit heden te dage uitzonderlijk.

8.5 Aanbevelingen
Met betrekking tot het opzetten van een adequaat zorgpad voor ouderen met een heupfractuur verdient het aanbeveling om de volgende maatregelen te treffen:
Opname op een “hip-fracture unit” in het ziekenhuis;
Formeren van een “hip-fracture team”, bestaand uit anaesthesiologen, (orthopedisch) chirurgen, klinisch geriaters en fysiotherapeuten;
Ontslagprotocol met een gefixeerd besluitmoment op uiterlijk de 5e dag postoperatief;
Patiënten vanuit verpleeghuis: vervroegde terugplaatsing;
Indien nog geen transfers mogelijk van bed naar stoel: opname revalidatieafdeling verpleeghuis;
Indien wel transfers met hulp van één persoon mogelijk zijn: ontslag naar huis of verzorgingshuis met fysiotherapie aan huis en thuiszorg, belangrijk is mantelzorg;
Wanneer dit niet verwezenlijkt kan worden: binnen 9 dagen postoperatief plaatsing in verpleeghuis;
Psychogeriatrische aspecten hebben een negatieve invloed (delirium, cognitieve terugval), in dit geval altijd ontslag naar een revalidatieafdeling van een verpleeghuis inzetten;
Wekelijks multidisciplinaire bespreking met medische staf, verpleegkundige staf, fysiotherapeut, verpleeghuisarts om toe te zien op protocolnaaleving;
Gegarandeerde opnamecapaciteit met betrekking tot revalidatieafdeling verpleeghuis, zowel somatisch als psychogeriatrisch;
Transmurale statusvoering;
Vereenvoudiging ontslagprocedure in overleg met Centrum Indicatiestelling Zorg (CIZ) met behulp van Standaard Indicatie Protocol (SIP);
Garantstelling maximum van 100 dagen opname voor revalidatiedoeleinden in verpleeghuis.
Richtlijn
Behandeling van de proximale femurfractuur bij de oudere mens

3e tranche
Inhoudsopgave

1 Radiodiagnostiek ..3
2 Classificatie van de mediale collumfractuur ...3
3 Classificatie van de trochantere femurfractuur ...4
4 Patiëntprofiel ..6
5 De behandeling van de geïnclaveerde mediale collumfractuur ...7
6 De behandeling van de gedisloceerde mediale collumfractuur ..9
 6.1 Algemeen ..9
 6.2 Osteosynthese ..9
 6.3 Endoprothese ..10
 6.4 Osteosynthese versus endoprothese ...11
7 De behandeling van trochantere femurfractuur ..12
 7.1 Algemeen ...12
 7.2 Glijdende heupschroef (GHS) ..12
 7.3 Intramedullaire heuppen (IM pen) ..13
 7.4 GHS versus IM pen ...13
8 Peri- en Postoperatief Management, Preventie complicaties, Osteoporose, Valrisco15
9 Revalidatie en resocialisatie ...17
10 Fysiotherapie ...19
1 Radiodiagnostiek

2 Classificatie van de mediale collumfractuur

3 Classificatie van de trochantere femurfractuur

4 Patiëntprofiel

5 De behandeling van de geïnclaveerde mediale collumfractuur

110. **Colles A.** Fracture of the neck of the femur. Dublin Hospital Reports 1818;2:334-55
6 De behandeling van de gedisloceerde mediale collumfractuur

6.1 Algemeen

21-09-06: hier gebleven

6.2 Osteosynthese

6.3 Endoprothese

172. Hoppenfeld S. Surgical exposure in orthopaedics 3rd Lippincot 2003

179. Swedisch hip register. www.jru.orthop.gu.se

6.4 Osteosynthese versus endoprothese

7 De behandeling van trochantere femurfractuur

7.1 Algemeen

7.2 Glijdende heupschroef (GHS)

7.3 Intramedullaire heuppen (IM pen)

7.4 GHS versus IM pen

8 Peri- en Postoperatief Management, Preventie complicaties, Osteoporose, Valrisico

274. CBO Consensus Osteoporose, Tweede Herziene Richtlijn 2002. isbn 90-76906-23-8
 http://www.cbo.nl/product/richtlijnen/

275. CBO Preventie van Valincidenten bij Ouderen, Richtlijn 2004. isbn 90-8523-026-8
 http://www.cbo.nl/product/richtlijnen/

9 Revalidatie en resocialisatie

10 Fysiotherapie

